import Mathlib.Analysis.SpecialFunctions.Integrals import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog import Mathlib.MeasureTheory.Integral.CircleIntegral open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral -- The following theorem was suggested by Gareth Ma on Zulip theorem logInt {t : ℝ} (ht : 0 < t) : ∫ x in (0 : ℝ)..t, log x = t * log t - t := by rw [← integral_add_adjacent_intervals (b := 1)] trans (-1) + (t * log t - t + 1) · congr · -- ∫ x in 0..1, log x = -1, same proof as before rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)] · simp · simp · intro x hx norm_num at hx convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1 norm_num · rw [← neg_neg log] apply IntervalIntegrable.neg apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x)) · exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg · intro x hx norm_num at hx convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1 norm_num · intro x hx norm_num at hx rw [Pi.neg_apply, Left.nonneg_neg_iff] exact (log_nonpos_iff hx.left).mpr hx.right.le · have := tendsto_log_mul_rpow_nhds_zero zero_lt_one simp_rw [rpow_one, mul_comm] at this -- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id) norm_num · rw [(by simp : -1 = 1 * log 1 - 1)] apply tendsto_nhdsWithin_of_tendsto_nhds exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id · -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos rw [integral_log_of_pos zero_lt_one ht] norm_num · abel · -- log is integrable on [[0, 1]] rw [← neg_neg log] apply IntervalIntegrable.neg apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x)) · exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg · intro x hx norm_num at hx convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1 norm_num · intro x hx norm_num at hx rw [Pi.neg_apply, Left.nonneg_neg_iff] exact (log_nonpos_iff hx.left).mpr hx.right.le · -- log is integrable on [[0, t]] simp [Set.mem_uIcc, ht] lemma int₁ : ∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by dsimp [Complex.abs] rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))] congr calc Complex.normSq (circleMap 0 1 x - 1) _ = (cos x - 1) * (cos x - 1) + sin x * sin x := by dsimp [circleMap] rw [Complex.normSq_apply] simp _ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by ring _ = 2 - 2 * cos x := by rw [sin_sq_add_cos_sq] norm_num _ = 2 - 2 * cos (2 * (x / 2)) := by rw [← mul_div_assoc] congr; norm_num _ = 4 - 4 * Real.cos (x / 2) ^ 2 := by rw [cos_two_mul] ring _ = 4 * sin (x / 2) ^ 2 := by nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)] ring simp_rw [this] simp have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2) nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))] rw [← mul_inv_cancel_of_invertible 2, mul_assoc] let f := fun y ↦ log (4 * sin y ^ 2) have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp conv => left right right arg 1 intro x rw [this] rw [intervalIntegral.inv_mul_integral_comp_div 2] simp rw [this] simp sorry