This commit is contained in:
@@ -1,45 +1,8 @@
|
||||
import Mathlib
|
||||
|
||||
open Filter Set Topology
|
||||
|
||||
variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{f : 𝕜 → E} {U : Set 𝕜}
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
|
||||
/--
|
||||
The singular set of a meromorphic function is countable.
|
||||
-/
|
||||
theorem MeromorphicOn.countable_compl_analyticAt [SecondCountableTopology 𝕜] [CompleteSpace E]
|
||||
(h : MeromorphicOn f U) :
|
||||
({z | AnalyticAt 𝕜 f z}ᶜ ∩ U).Countable := by
|
||||
classical
|
||||
have := discreteTopology_of_codiscreteWithin (eventually_codiscreteWithin_analyticAt f h)
|
||||
apply countable_of_Lindelof_of_discrete
|
||||
|
||||
|
||||
variable
|
||||
[MeasurableSpace 𝕜] [SecondCountableTopology 𝕜] [BorelSpace 𝕜]
|
||||
[MeasurableSpace E] [CompleteSpace E] [BorelSpace E]
|
||||
|
||||
/--
|
||||
Meromorphic functions are measurable.
|
||||
-/
|
||||
theorem meromorphic_measurable {f : 𝕜 → E} (h : MeromorphicOn f Set.univ) :
|
||||
Measurable f := by
|
||||
set s := {z : 𝕜 | AnalyticAt 𝕜 f z}
|
||||
have h₁ : sᶜ.Countable := by simpa using h.countable_compl_analyticAt
|
||||
have h₂ : IsOpen s := isOpen_analyticAt 𝕜 f
|
||||
have h₃ : ContinuousOn f s := fun z hz ↦ hz.continuousAt.continuousWithinAt
|
||||
apply measurable_of_isOpen
|
||||
intro V hV
|
||||
rw [(by aesop : f ⁻¹' V = (f ⁻¹' V ∩ s) ∪ (f ⁻¹' V ∩ sᶜ))]
|
||||
apply MeasurableSet.union (IsOpen.measurableSet _) (h₁.mono inter_subset_right).measurableSet
|
||||
rw [isOpen_iff_mem_nhds] at *
|
||||
intro x a
|
||||
simp_all [mem_setOf_eq, mem_inter_iff, mem_preimage, inter_mem_iff, and_true, s]
|
||||
apply h₃.continuousAt (h₂ x a.2) (hV (f x) a.1)
|
||||
|
||||
lemma ρ₀ {r : ℝ} {hr : r ≠ 0} {f g : ℝ → ℂ} (h : MeromorphicOn f Set.univ) :
|
||||
Measurable (fun x ↦ f x.1 + g x.2 : ℝ × ℝ → ℂ) := by
|
||||
lemma MeromorphicAt.comp {x : ℝ} {f : ℂ → E} {g : ℝ → ℂ}
|
||||
(hf : MeromorphicAt f (g x)) (hg : MeromorphicAt g x) : MeromorphicAt (f ∘ g) x := by
|
||||
sorry
|
||||
|
||||
Reference in New Issue
Block a user