This commit is contained in:
@@ -1,24 +1,26 @@
|
|||||||
import Mathlib.Analysis.Meromorphic.Basic
|
import Mathlib.Analysis.Meromorphic.Basic
|
||||||
|
import Mathlib.Analysis.Meromorphic.Order
|
||||||
|
|
||||||
open MeromorphicOn Metric Real Set Classical
|
open MeromorphicOn Metric Real Set Classical
|
||||||
|
|
||||||
variable
|
variable
|
||||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
{𝕜 : Type*} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
|
||||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E]
|
|
||||||
{U : Set 𝕜} {f g : 𝕜 → E} {a : WithTop E} {a₀ : E}
|
|
||||||
|
|
||||||
/-- Derivatives of meromorphic functions are meromorphic. -/
|
/-- Derivatives of meromorphic functions are meromorphic. -/
|
||||||
@[fun_prop]
|
@[fun_prop]
|
||||||
theorem meromorphicAt_deriv {f : 𝕜 → E} {x : 𝕜} (h : MeromorphicAt f x) :
|
theorem meromorphicAt_deriv {f : 𝕜 → 𝕜} {x : 𝕜}
|
||||||
|
(h : MeromorphicAt f x) (h₁ : h.order ≠ ⊤) :
|
||||||
MeromorphicAt (deriv f) x := by
|
MeromorphicAt (deriv f) x := by
|
||||||
unfold MeromorphicAt at *
|
|
||||||
obtain ⟨n, hn⟩ := h
|
|
||||||
use n + 1
|
|
||||||
have := hn.deriv
|
|
||||||
sorry
|
|
||||||
|
|
||||||
/-- Logarithmic derivatives of meromorphic functions are meromorphic. -/
|
obtain ⟨g, h₁g, h₂g, h₃⟩ := h.order_ne_top_iff.1 h₁
|
||||||
@[fun_prop]
|
lift h.order to ℤ using h₁ with n hn
|
||||||
theorem MeromorphicAt.logDeriv {f : 𝕜 → 𝕜} {x : 𝕜} (h : MeromorphicAt f x) :
|
|
||||||
MeromorphicAt (f⁻¹ * deriv f) x := by
|
have : (n : WithTop ℤ).untop₀ = n := by
|
||||||
|
sorry
|
||||||
|
simp_all [this]
|
||||||
|
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] deriv (fun z ↦ (z - x) ^ n * g z) := by
|
||||||
|
sorry
|
||||||
|
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by
|
||||||
|
sorry
|
||||||
|
apply MeromorphicAt.congr _ this.symm
|
||||||
sorry
|
sorry
|
||||||
|
|||||||
Reference in New Issue
Block a user