From b3f99c37f2d3aa6da4165e9d3ef507bb0e211434 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 27 Oct 2025 15:27:06 +0100 Subject: [PATCH] Update Basic.lean --- Aristotle/Basic.lean | 28 +++++++++++++++------------- 1 file changed, 15 insertions(+), 13 deletions(-) diff --git a/Aristotle/Basic.lean b/Aristotle/Basic.lean index 4781412..7e921cf 100644 --- a/Aristotle/Basic.lean +++ b/Aristotle/Basic.lean @@ -1,24 +1,26 @@ import Mathlib.Analysis.Meromorphic.Basic +import Mathlib.Analysis.Meromorphic.Order open MeromorphicOn Metric Real Set Classical variable - {π•œ : Type*} [NontriviallyNormedField π•œ] - {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] [CompleteSpace E] - {U : Set π•œ} {f g : π•œ β†’ E} {a : WithTop E} {aβ‚€ : E} + {π•œ : Type*} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] /-- Derivatives of meromorphic functions are meromorphic. -/ @[fun_prop] -theorem meromorphicAt_deriv {f : π•œ β†’ E} {x : π•œ} (h : MeromorphicAt f x) : +theorem meromorphicAt_deriv {f : π•œ β†’ π•œ} {x : π•œ} + (h : MeromorphicAt f x) (h₁ : h.order β‰  ⊀) : MeromorphicAt (deriv f) x := by - unfold MeromorphicAt at * - obtain ⟨n, hn⟩ := h - use n + 1 - have := hn.deriv - sorry -/-- Logarithmic derivatives of meromorphic functions are meromorphic. -/ -@[fun_prop] -theorem MeromorphicAt.logDeriv {f : π•œ β†’ π•œ} {x : π•œ} (h : MeromorphicAt f x) : - MeromorphicAt (f⁻¹ * deriv f) x := by + obtain ⟨g, h₁g, hβ‚‚g, hβ‚ƒβŸ© := h.order_ne_top_iff.1 h₁ + lift h.order to β„€ using h₁ with n hn + + have : (n : WithTop β„€).untopβ‚€ = n := by + sorry + simp_all [this] + have : deriv f =αΆ [nhdsWithin x {x}ᢜ] deriv (fun z ↦ (z - x) ^ n * g z) := by + sorry + have : deriv f =αΆ [nhdsWithin x {x}ᢜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by + sorry + apply MeromorphicAt.congr _ this.symm sorry