This commit is contained in:
@@ -1,24 +1,26 @@
|
||||
import Mathlib.Analysis.Meromorphic.Basic
|
||||
import Mathlib.Analysis.Meromorphic.Order
|
||||
|
||||
open MeromorphicOn Metric Real Set Classical
|
||||
|
||||
variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E]
|
||||
{U : Set 𝕜} {f g : 𝕜 → E} {a : WithTop E} {a₀ : E}
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
|
||||
|
||||
/-- Derivatives of meromorphic functions are meromorphic. -/
|
||||
@[fun_prop]
|
||||
theorem meromorphicAt_deriv {f : 𝕜 → E} {x : 𝕜} (h : MeromorphicAt f x) :
|
||||
theorem meromorphicAt_deriv {f : 𝕜 → 𝕜} {x : 𝕜}
|
||||
(h : MeromorphicAt f x) (h₁ : h.order ≠ ⊤) :
|
||||
MeromorphicAt (deriv f) x := by
|
||||
unfold MeromorphicAt at *
|
||||
obtain ⟨n, hn⟩ := h
|
||||
use n + 1
|
||||
have := hn.deriv
|
||||
sorry
|
||||
|
||||
/-- Logarithmic derivatives of meromorphic functions are meromorphic. -/
|
||||
@[fun_prop]
|
||||
theorem MeromorphicAt.logDeriv {f : 𝕜 → 𝕜} {x : 𝕜} (h : MeromorphicAt f x) :
|
||||
MeromorphicAt (f⁻¹ * deriv f) x := by
|
||||
obtain ⟨g, h₁g, h₂g, h₃⟩ := h.order_ne_top_iff.1 h₁
|
||||
lift h.order to ℤ using h₁ with n hn
|
||||
|
||||
have : (n : WithTop ℤ).untop₀ = n := by
|
||||
sorry
|
||||
simp_all [this]
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] deriv (fun z ↦ (z - x) ^ n * g z) := by
|
||||
sorry
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by
|
||||
sorry
|
||||
apply MeromorphicAt.congr _ this.symm
|
||||
sorry
|
||||
|
||||
Reference in New Issue
Block a user