This commit is contained in:
@@ -3,25 +3,36 @@ import Mathlib.Analysis.Calculus.Deriv.Mul
|
||||
import Mathlib.Analysis.Calculus.Deriv.ZPow
|
||||
import Mathlib.Analysis.Calculus.Deriv.Shift
|
||||
|
||||
open MeromorphicOn Metric Real Set Classical
|
||||
open MeromorphicOn Real Set Classical Topology
|
||||
|
||||
set_option checkBinderAnnotations false
|
||||
|
||||
theorem eventually_eventually_nhdsWithin₁
|
||||
{α : Type u_1} [TopologicalSpace α] {a : α} {s : Set α} {p : α → Prop} [IsClosed s] :
|
||||
(∀ᶠ (y : α) in nhdsWithin a s, ∀ᶠ (x : α) in nhds y, p x) ↔ ∀ᶠ (x : α) in nhdsWithin a s, p x := by
|
||||
{α : Type*} [TopologicalSpace α] [T1Space α] {a : α} {p : α → Prop} :
|
||||
(∀ᶠ (y : α) in 𝓝[≠] a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝[≠] a, p x := by
|
||||
nth_rw 2 [← eventually_eventually_nhdsWithin]
|
||||
constructor
|
||||
· intro h
|
||||
filter_upwards [h] with y hy
|
||||
exact eventually_nhdsWithin_of_eventually_nhds hy
|
||||
· intro h
|
||||
filter_upwards [h] with y hy
|
||||
have : y ∉ s := by sorry
|
||||
rw [eventually_nhdsWithin_iff] at hy
|
||||
rw [Filter.Eventually] at *
|
||||
apply Filter.mem_of_superset hy
|
||||
intro x hx
|
||||
simp_all
|
||||
sorry
|
||||
filter_upwards [h, eventually_nhdsWithin_of_forall fun _ a ↦ a] with y h₁y h₂y
|
||||
simp_all [IsOpen.nhdsWithin_eq]
|
||||
|
||||
theorem Filter.EventuallyEq.nhdsNE_deriv
|
||||
{𝕜 : Type u} [NontriviallyNormedField 𝕜]
|
||||
{F : Type v} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f f₁ : 𝕜 → F} {x : 𝕜}
|
||||
(h : f₁ =ᶠ[𝓝[≠] x] f) :
|
||||
deriv f₁ =ᶠ[𝓝[≠] x] deriv f := by
|
||||
rw [eventuallyEq_nhdsWithin_iff, eventually_nhds_iff] at *
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h
|
||||
use t
|
||||
simp_all only [mem_compl_iff, mem_singleton_iff, and_self, and_true]
|
||||
intro y h₁y h₂y
|
||||
rw [Filter.EventuallyEq.deriv_eq]
|
||||
apply eventually_nhds_iff.2
|
||||
use t \ {x}
|
||||
simp_all [IsOpen.sdiff h₂t isClosed_singleton]
|
||||
|
||||
variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
@@ -41,21 +52,13 @@ theorem meromorphicAt_deriv {f : 𝕜 → E} {x : 𝕜} (h : MeromorphicAt f x)
|
||||
=ᶠ[nhdsWithin x {x}ᶜ] fun z₀ ↦ (n * (z₀ - x) ^ (n - 1)) • g z₀ + (z₀ - x) ^ n • deriv g z₀ := by
|
||||
have τ₀ : ∀ᶠ (y : 𝕜) in nhdsWithin x {x}ᶜ, AnalyticAt 𝕜 g y := by
|
||||
exact eventually_nhdsWithin_of_eventually_nhds h₁g.eventually_analyticAt
|
||||
have τ₁ : ∀ᶠ (y : 𝕜) in nhdsWithin x {x}ᶜ, y ≠ x := by
|
||||
exact eventually_nhdsWithin_of_forall fun x_1 a ↦ a
|
||||
filter_upwards [τ₀, τ₁] with z₀ h₁ h₂
|
||||
rw [deriv_smul]
|
||||
rw [add_comm]
|
||||
congr
|
||||
rw [deriv_comp_sub_const (f := fun z ↦ z ^ n)]
|
||||
filter_upwards [eventually_nhdsWithin_of_eventually_nhds h₁g.eventually_analyticAt,
|
||||
eventually_nhdsWithin_of_forall fun _ a ↦ a] with z₀ h₁ h₂
|
||||
rw [deriv_smul (DifferentiableAt.zpow (by fun_prop) (by simp_all [sub_ne_zero_of_ne h₂])) (by fun_prop),
|
||||
add_comm, deriv_comp_sub_const (f := fun z ↦ z ^ n)]
|
||||
aesop
|
||||
refine DifferentiableAt.zpow ?_ ?_
|
||||
fun_prop
|
||||
left
|
||||
exact sub_ne_zero_of_ne h₂
|
||||
fun_prop
|
||||
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] (fun z ↦ (z - x) ^ n • g z) := by
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] deriv (fun z ↦ (z - x) ^ n • g z) := by
|
||||
sorry
|
||||
|
||||
apply MeromorphicAt.congr _ this.symm
|
||||
|
||||
Reference in New Issue
Block a user