This commit is contained in:
@@ -5,6 +5,24 @@ import Mathlib.Analysis.Calculus.Deriv.Shift
|
||||
|
||||
open MeromorphicOn Metric Real Set Classical
|
||||
|
||||
theorem eventually_eventually_nhdsWithin₁
|
||||
{α : Type u_1} [TopologicalSpace α] {a : α} {s : Set α} {p : α → Prop} [IsClosed s] :
|
||||
(∀ᶠ (y : α) in nhdsWithin a s, ∀ᶠ (x : α) in nhds y, p x) ↔ ∀ᶠ (x : α) in nhdsWithin a s, p x := by
|
||||
nth_rw 2 [← eventually_eventually_nhdsWithin]
|
||||
constructor
|
||||
· intro h
|
||||
filter_upwards [h] with y hy
|
||||
exact eventually_nhdsWithin_of_eventually_nhds hy
|
||||
· intro h
|
||||
filter_upwards [h] with y hy
|
||||
have : y ∉ s := by sorry
|
||||
rw [eventually_nhdsWithin_iff] at hy
|
||||
rw [Filter.Eventually] at *
|
||||
apply Filter.mem_of_superset hy
|
||||
intro x hx
|
||||
simp_all
|
||||
sorry
|
||||
|
||||
variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E]
|
||||
|
||||
Reference in New Issue
Block a user