This commit is contained in:
@@ -7,20 +7,7 @@ variable
|
|||||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
|
{𝕜 : Type*} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
|
||||||
|
|
||||||
/-- Derivatives of meromorphic functions are meromorphic. -/
|
/-- Derivatives of meromorphic functions are meromorphic. -/
|
||||||
@[fun_prop]
|
theorem meromorphicAt_deriv_of_order_eq_top {f : 𝕜 → 𝕜} {x : 𝕜}
|
||||||
theorem meromorphicAt_deriv {f : 𝕜 → 𝕜} {x : 𝕜}
|
(h : MeromorphicAt f x) (h₁ : h.order = ⊤) :
|
||||||
(h : MeromorphicAt f x) (h₁ : h.order ≠ ⊤) :
|
|
||||||
MeromorphicAt (deriv f) x := by
|
MeromorphicAt (deriv f) x := by
|
||||||
|
|
||||||
obtain ⟨g, h₁g, h₂g, h₃⟩ := h.order_ne_top_iff.1 h₁
|
|
||||||
lift h.order to ℤ using h₁ with n hn
|
|
||||||
|
|
||||||
have : (n : WithTop ℤ).untop₀ = n := by
|
|
||||||
sorry
|
|
||||||
simp_all [this]
|
|
||||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] deriv (fun z ↦ (z - x) ^ n * g z) := by
|
|
||||||
sorry
|
|
||||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by
|
|
||||||
sorry
|
|
||||||
apply MeromorphicAt.congr _ this.symm
|
|
||||||
sorry
|
sorry
|
||||||
|
|||||||
Reference in New Issue
Block a user