From 2bb8762a4fda69034dc74f86bd75c63c933472dc Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Tue, 4 Nov 2025 16:30:01 +0100 Subject: [PATCH] Update Basic.lean --- Aristotle/Basic.lean | 17 ++--------------- 1 file changed, 2 insertions(+), 15 deletions(-) diff --git a/Aristotle/Basic.lean b/Aristotle/Basic.lean index 7e921cf..90f861f 100644 --- a/Aristotle/Basic.lean +++ b/Aristotle/Basic.lean @@ -7,20 +7,7 @@ variable {π•œ : Type*} [NontriviallyNormedField π•œ] [CompleteSpace π•œ] /-- Derivatives of meromorphic functions are meromorphic. -/ -@[fun_prop] -theorem meromorphicAt_deriv {f : π•œ β†’ π•œ} {x : π•œ} - (h : MeromorphicAt f x) (h₁ : h.order β‰  ⊀) : +theorem meromorphicAt_deriv_of_order_eq_top {f : π•œ β†’ π•œ} {x : π•œ} + (h : MeromorphicAt f x) (h₁ : h.order = ⊀) : MeromorphicAt (deriv f) x := by - - obtain ⟨g, h₁g, hβ‚‚g, hβ‚ƒβŸ© := h.order_ne_top_iff.1 h₁ - lift h.order to β„€ using h₁ with n hn - - have : (n : WithTop β„€).untopβ‚€ = n := by - sorry - simp_all [this] - have : deriv f =αΆ [nhdsWithin x {x}ᢜ] deriv (fun z ↦ (z - x) ^ n * g z) := by - sorry - have : deriv f =αΆ [nhdsWithin x {x}ᢜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by - sorry - apply MeromorphicAt.congr _ this.symm sorry