This commit is contained in:
@@ -7,20 +7,7 @@ variable
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜]
|
||||
|
||||
/-- Derivatives of meromorphic functions are meromorphic. -/
|
||||
@[fun_prop]
|
||||
theorem meromorphicAt_deriv {f : 𝕜 → 𝕜} {x : 𝕜}
|
||||
(h : MeromorphicAt f x) (h₁ : h.order ≠ ⊤) :
|
||||
theorem meromorphicAt_deriv_of_order_eq_top {f : 𝕜 → 𝕜} {x : 𝕜}
|
||||
(h : MeromorphicAt f x) (h₁ : h.order = ⊤) :
|
||||
MeromorphicAt (deriv f) x := by
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃⟩ := h.order_ne_top_iff.1 h₁
|
||||
lift h.order to ℤ using h₁ with n hn
|
||||
|
||||
have : (n : WithTop ℤ).untop₀ = n := by
|
||||
sorry
|
||||
simp_all [this]
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] deriv (fun z ↦ (z - x) ^ n * g z) := by
|
||||
sorry
|
||||
have : deriv f =ᶠ[nhdsWithin x {x}ᶜ] fun z ↦ n * (z - x) ^ (n - 1) * g z + (z - x) ^ n * deriv g z := by
|
||||
sorry
|
||||
apply MeromorphicAt.congr _ this.symm
|
||||
sorry
|
||||
|
||||
Reference in New Issue
Block a user