LineareAlgebra2/.vscode/ltex.hiddenFalsePositives.de-DE.txt
Stefan Kebekus 0dd5b65ed1 Cleanup
2025-05-09 12:25:00 +02:00

36 lines
7.2 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qdenn dann hat auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Jordansche Normalform)\\E$"}
{"rule":"DE_SENTENCE_WHITESPACE","sentence":"^\\QVorlesung 4 Allerdings ist die Partition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q noch nicht die, von der in Beobachtung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q die Rede war: Wir müssen erst zur „dualen Partition“ übergehen.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QNämlich so: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Das Diagramm soll die Eigenschaft haben, dass für jeden Index \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Folgendes gilt.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QSchritt 2, Lineare Unabhängigkeit.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QNummeriere die Elemente des Diagramms jetzt wie folgt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Dann ist klar, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, …, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, … und insgesamt ergibt sich, dass die Matrix von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q bezüglich dieser angeordneten Basis die Form \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q hat.\\E$"}
{"rule":"UNPAIRED_BRACKETS","sentence":"^\\QFür jeden Index \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q bestimme den Hauptraum \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q zum Eigenwert \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q — Punkt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q von Satz \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q („Geometrische Bedeutung der algebraischen Multiplizität” ) sagt, wie das geht: der Hauptraum ist gegeben als \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QDieses Skript zur Vorlesung „Lineare Algebra II“ wird im Laufe des Sommersemester 2020 ständig weiter geschrieben.\\E$"}
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QDieses Skript zur Vorlesung „Lineare Algebra II“ wird im Laufe des Sommersemester 2025 ständig weiter geschrieben.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWir beweisen Satz \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q nach einigen Vorbereitungen im Abschnitt ssec:pjnf.\\E$"}
{"rule":"DE_COMPOUND_COHERENCY","sentence":"^\\QAls nächstes überlegen wir uns, wie die Potenzen von beliebigen Jordan-Blöcken ausrechnen.\\E$"}
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QIch wiederhole die Warnung aus „Lineare Algebra I“.\\E$"}
{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qden Grad des Polynoms, in Formeln \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität im ersten Argument] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität im zweiten Argument] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"}
{"rule":"DE_CASE","sentence":"^\\Q[Positive Definitheit] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Satz des Pythagoras] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+$"}
{"rule":"KOMMA_ZWISCHEN_HAUPT_UND_NEBENSATZ","sentence":"^\\QDann gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Pythagoras \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Definition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist abstandserhaltend \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Definition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QKpte.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität im zweiten Argument] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität in der ersten Komponente] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität in der zweiten Komponente] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"UNPAIRED_BRACKETS","sentence":"^\\Q“Velociraptoren” sind etwas ganz anderes als “romantische Gefühle”, auch wenn beide Menschen verzehren.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-Matrizen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Bilinearformen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Damit beweisen Sie unter anderem folgendes: gegeben Zahlen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, dann gibt es genau eine Bilinearform \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, so dass für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QDidaktisch ist das eine Katastrophe wir haben in der Vorlesung „Lineare Algebra I“ jeder linearen Abbildung eine Matrix zugeordnet.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-Matrizen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Bilinearformen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Damit beweisen Sie unter anderem folgendes: gegeben Zahlen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, dann gibt es genau eine Bilinearform \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QGenauer: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\QBilinearformen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-Matrizen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Qsymm.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QBilinearformen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Qsymm.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QLesson learned: Matrizen können sowohl lineare Abbildungen (insbesondere: Endomorphismen) als auch bilineare Abbildungen zu beschreiben.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QDie wesentliche Eigenschaft von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q war zusammengefasst in der Kommutativität des folgenden Diagramms, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q In einer Zeile: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QSesqui = Eineinhalb\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Linearität in der ersten Komponente] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"DE_CASE","sentence":"^\\Q[Semilinearität in der zweiten Komponente] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
{"rule":"KOMMA_VOR_ERLAEUTERUNG","sentence":"^\\QBeachten Sie, dass jeder komplexe Vektorraum immer auch ein reeller Vektorraum ist, also bildet die Menge der Sesquilinearformen insbesondere einen reellen Vektorraum.\\E$"}
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q (* 24. Dezember 1822 in Dieuze, Lothringen; † 14. Januar 1901 in Paris) war ein französischer Mathematiker.\\E$"}
{"rule":"DOPPELTE_SATZZEICHEN","sentence":"^\\QWill ich das wirklich wissen?.\\E$"}