Clean up first lectures

This commit is contained in:
Stefan Kebekus
2025-04-09 13:06:20 +02:00
parent 393c8cc10c
commit edec21e4a2
5 changed files with 159 additions and 136 deletions

View File

@@ -0,0 +1,6 @@
{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qdenn dann hat auch \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Jordansche Normalform)\\E$"}
{"rule":"DE_SENTENCE_WHITESPACE","sentence":"^\\QVorlesung 4 Allerdings ist die Partition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q noch nicht die, von der in Beobachtung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q die Rede war: Wir müssen erst zur „dualen Partition“ übergehen.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QNämlich so: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Das Diagramm soll die Eigenschaft haben, dass für jeden Index \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Folgendes gilt.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QSchritt 2, Lineare Unabhängigkeit.\\E$"}
{"rule":"DE_CASE","sentence":"^\\QNummeriere die Elemente des Diagramms jetzt wie folgt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Dann ist klar, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, …, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, … und insgesamt ergibt sich, dass die Matrix von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q bezüglich dieser angeordneten Basis die Form \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q hat.\\E$"}
{"rule":"UNPAIRED_BRACKETS","sentence":"^\\QFür jeden Index \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q bestimme den Hauptraum \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q von \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q zum Eigenwert \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q — Punkt \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q von Satz \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q („Geometrische Bedeutung der algebraischen Multiplizität” ) sagt, wie das geht: der Hauptraum ist gegeben als \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}