Cleanup
This commit is contained in:
9
.vscode/ltex.hiddenFalsePositives.de-DE.txt
vendored
9
.vscode/ltex.hiddenFalsePositives.de-DE.txt
vendored
@@ -41,3 +41,12 @@
|
||||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QDann ergibt sich \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, womit der Beweis der Cauchy-Schwarzschen Ungleichung beendet ist.\\E$"}
|
||||
{"rule":"DE_CASE","sentence":"^\\Q[Positive Definitheit] Für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"DE_CASE","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q-Matrizen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Bilinearformen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Damit beweisen Sie unter anderem Folgendes: Gegeben Zahlen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, dann gibt es genau eine Bilinearform \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, sodass für alle \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q gilt, dass \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QWir hatten in Kapitel 12 der Vorlesung „Lineare Algebra I“ bereits einen Begriff von „orthogonalen Unterraum“.\\E$"}
|
||||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QWir werden in Abschnitt sec:dual sehen, wie die Begriffe zusammenhängen.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QVorlesung 12Einer der beliebtesten Begriffe der Vorlesung „Lineare Algebra I“ ist der des “Dualraum”.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QVorlesung 12Einer der beliebtesten Begriffe der Vorlesung „Lineare Algebra I“ ist der des „Dualraum“.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QIn Bemerkung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q hatte ich schon versprochen, den Zusammenhang zwischen den „orthogonalen Unterräumen“ aus der Vorlesung „Lineare Algebra I“ und dem “orthogonalen Komplement” aus Definition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q zu klären.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QIn Bemerkung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q hatte ich schon versprochen, den Zusammenhang zwischen den „orthogonalen Unterräumen“ aus der Vorlesung „Lineare Algebra I“ und dem „orthogonalen Komplement“ aus Definition \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q zu klären.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QWir hatten in letzten Abschnitt das orthogonale Komplement eines Untervektorraumes \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q in kanonischer Weise mit dem Raum \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q identifiziert, der uns aus der Vorlesung „Lineare Algebra I“ vertraut war.\\E$"}
|
||||
{"rule":"KLEINSCHREIBUNG_KEIN_NAME","sentence":"^\\QZu jeder linearen Abbildung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q haben wir in der Vorlesung „Lineare Algebra I“ eine „Rückzugsabbildung“ zwischen den Dualräumen definiert, nämlich \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"DE_CASE","sentence":"^\\QBetrachte das folgende Diagramm: \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, isomorph \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, isomorph \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, Rückzugsabbildung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q Beim Betrachten des Diagramms \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q fällt auf, dass die Abbildungen \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q und \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q von der Wahl der Skalarprodukte abhängen.\\E$"}
|
||||
|
||||
Reference in New Issue
Block a user