Update
This commit is contained in:
314
.gitignore
vendored
314
.gitignore
vendored
@@ -1,309 +1,19 @@
|
||||
# ---> TeX
|
||||
## Core latex/pdflatex auxiliary files:
|
||||
public
|
||||
*.aux
|
||||
*.lof
|
||||
*.log
|
||||
*.lot
|
||||
*.fls
|
||||
*.out
|
||||
*.toc
|
||||
*.fmt
|
||||
*.fot
|
||||
*.cb
|
||||
*.cb2
|
||||
.*.lb
|
||||
|
||||
## Intermediate documents:
|
||||
*.dvi
|
||||
*.xdv
|
||||
*-converted-to.*
|
||||
# these rules might exclude image files for figures etc.
|
||||
# *.ps
|
||||
# *.eps
|
||||
# *.pdf
|
||||
|
||||
## Generated if empty string is given at "Please type another file name for output:"
|
||||
.pdf
|
||||
|
||||
## Bibliography auxiliary files (bibtex/biblatex/biber):
|
||||
*.bbl
|
||||
*.bbl-SAVE-ERROR
|
||||
*.bcf
|
||||
*.blg
|
||||
*-blx.aux
|
||||
*-blx.bib
|
||||
*.run.xml
|
||||
|
||||
## Build tool auxiliary files:
|
||||
*.fdb_latexmk
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
*.synctex.gz
|
||||
*.synctex.gz(busy)
|
||||
*.pdfsync
|
||||
*.rubbercache
|
||||
rubber.cache
|
||||
|
||||
## Build tool directories for auxiliary files
|
||||
# latexrun
|
||||
latex.out/
|
||||
|
||||
## Auxiliary and intermediate files from other packages:
|
||||
# algorithms
|
||||
*.alg
|
||||
*.loa
|
||||
|
||||
# achemso
|
||||
acs-*.bib
|
||||
|
||||
# amsthm
|
||||
*.thm
|
||||
|
||||
# beamer
|
||||
*.nav
|
||||
*.pre
|
||||
*.snm
|
||||
*.vrb
|
||||
|
||||
# changes
|
||||
*.soc
|
||||
|
||||
# comment
|
||||
*.cut
|
||||
|
||||
# cprotect
|
||||
*.cpt
|
||||
|
||||
# elsarticle (documentclass of Elsevier journals)
|
||||
*.spl
|
||||
|
||||
# endnotes
|
||||
*.ent
|
||||
|
||||
# fixme
|
||||
*.lox
|
||||
|
||||
# feynmf/feynmp
|
||||
*.mf
|
||||
*.mp
|
||||
*.t[1-9]
|
||||
*.t[1-9][0-9]
|
||||
*.tfm
|
||||
|
||||
#(r)(e)ledmac/(r)(e)ledpar
|
||||
*.end
|
||||
*.?end
|
||||
*.[1-9]
|
||||
*.[1-9][0-9]
|
||||
*.[1-9][0-9][0-9]
|
||||
*.[1-9]R
|
||||
*.[1-9][0-9]R
|
||||
*.[1-9][0-9][0-9]R
|
||||
*.eledsec[1-9]
|
||||
*.eledsec[1-9]R
|
||||
*.eledsec[1-9][0-9]
|
||||
*.eledsec[1-9][0-9]R
|
||||
*.eledsec[1-9][0-9][0-9]
|
||||
*.eledsec[1-9][0-9][0-9]R
|
||||
|
||||
# glossaries
|
||||
*.acn
|
||||
*.acr
|
||||
*.glg
|
||||
*.glo
|
||||
*.gls
|
||||
*.glsdefs
|
||||
*.lzo
|
||||
*.lzs
|
||||
*.slg
|
||||
*.slo
|
||||
*.sls
|
||||
|
||||
# uncomment this for glossaries-extra (will ignore makeindex's style files!)
|
||||
# *.ist
|
||||
|
||||
# gnuplot
|
||||
*.gnuplot
|
||||
*.table
|
||||
|
||||
# gnuplottex
|
||||
*-gnuplottex-*
|
||||
|
||||
# gregoriotex
|
||||
*.gaux
|
||||
*.glog
|
||||
*.gtex
|
||||
|
||||
# htlatex
|
||||
*.4ct
|
||||
*.4tc
|
||||
*.idv
|
||||
*.lg
|
||||
*.trc
|
||||
*.xref
|
||||
|
||||
# hypdoc
|
||||
*.hd
|
||||
|
||||
# hyperref
|
||||
*.brf
|
||||
|
||||
# knitr
|
||||
*-concordance.tex
|
||||
# TODO Uncomment the next line if you use knitr and want to ignore its generated tikz files
|
||||
# *.tikz
|
||||
*-tikzDictionary
|
||||
|
||||
# listings
|
||||
*.lol
|
||||
|
||||
# luatexja-ruby
|
||||
*.ltjruby
|
||||
|
||||
# makeidx
|
||||
*.fdb_latexmk
|
||||
*.fls
|
||||
*.idx
|
||||
*.ilg
|
||||
*.ind
|
||||
|
||||
# minitoc
|
||||
*.maf
|
||||
*.mlf
|
||||
*.mlt
|
||||
*.mtc[0-9]*
|
||||
*.slf[0-9]*
|
||||
*.slt[0-9]*
|
||||
*.stc[0-9]*
|
||||
|
||||
# minted
|
||||
_minted*
|
||||
*.pyg
|
||||
|
||||
# morewrites
|
||||
*.mw
|
||||
|
||||
# newpax
|
||||
*.newpax
|
||||
|
||||
# nomencl
|
||||
*.nlg
|
||||
*.nlo
|
||||
*.nls
|
||||
|
||||
# pax
|
||||
*.pax
|
||||
|
||||
# pdfpcnotes
|
||||
*.pdfpc
|
||||
|
||||
# sagetex
|
||||
*.sagetex.sage
|
||||
*.sagetex.py
|
||||
*.sagetex.scmd
|
||||
|
||||
# scrwfile
|
||||
*.wrt
|
||||
|
||||
# svg
|
||||
svg-inkscape/
|
||||
|
||||
# sympy
|
||||
*.sout
|
||||
*.sympy
|
||||
sympy-plots-for-*.tex/
|
||||
|
||||
# pdfcomment
|
||||
*.upa
|
||||
*.upb
|
||||
|
||||
# pythontex
|
||||
*.pytxcode
|
||||
pythontex-files-*/
|
||||
|
||||
# tcolorbox
|
||||
*.listing
|
||||
|
||||
# thmtools
|
||||
*.loe
|
||||
|
||||
# TikZ & PGF
|
||||
*.dpth
|
||||
*.md5
|
||||
*.auxlock
|
||||
|
||||
# titletoc
|
||||
*.ptc
|
||||
|
||||
# todonotes
|
||||
*.tdo
|
||||
|
||||
# vhistory
|
||||
*.hst
|
||||
*.ver
|
||||
|
||||
# easy-todo
|
||||
*.lod
|
||||
|
||||
# xcolor
|
||||
*.xcp
|
||||
|
||||
# xmpincl
|
||||
*.xmpi
|
||||
|
||||
# xindy
|
||||
*.xdy
|
||||
|
||||
# xypic precompiled matrices and outlines
|
||||
*.xyc
|
||||
*.xyd
|
||||
|
||||
# endfloat
|
||||
*.ttt
|
||||
*.fff
|
||||
|
||||
# Latexian
|
||||
TSWLatexianTemp*
|
||||
|
||||
## Editors:
|
||||
# WinEdt
|
||||
*.bak
|
||||
*.sav
|
||||
|
||||
# Texpad
|
||||
.texpadtmp
|
||||
|
||||
# LyX
|
||||
*.lyx~
|
||||
|
||||
# Kile
|
||||
*.backup
|
||||
|
||||
# gummi
|
||||
.*.swp
|
||||
|
||||
# KBibTeX
|
||||
*~[0-9]*
|
||||
|
||||
# TeXnicCenter
|
||||
*.tps
|
||||
|
||||
# auto folder when using emacs and auctex
|
||||
./auto/*
|
||||
*.el
|
||||
|
||||
# expex forward references with \gathertags
|
||||
*-tags.tex
|
||||
|
||||
# standalone packages
|
||||
*.sta
|
||||
|
||||
# Makeindex log files
|
||||
*.lpz
|
||||
|
||||
# xwatermark package
|
||||
*.xwm
|
||||
|
||||
# REVTeX puts footnotes in the bibliography by default, unless the nofootinbib
|
||||
# option is specified. Footnotes are the stored in a file with suffix Notes.bib.
|
||||
# Uncomment the next line to have this generated file ignored.
|
||||
#*Notes.bib
|
||||
|
||||
*.loa
|
||||
*.lof
|
||||
*.log
|
||||
*.lot
|
||||
*.out
|
||||
*.pdf
|
||||
*.synctex(busy)
|
||||
*.synctex.gz
|
||||
*.toc
|
||||
|
1
.vscode/ltex.dictionary.en-US.txt
vendored
Normal file
1
.vscode/ltex.dictionary.en-US.txt
vendored
Normal file
@@ -0,0 +1 @@
|
||||
Kebekus
|
189
01-Wiederholung.tex
Normal file
189
01-Wiederholung.tex
Normal file
@@ -0,0 +1,189 @@
|
||||
% spell checker language
|
||||
\selectlanguage{german}
|
||||
|
||||
\chapter{Wiederholung}
|
||||
|
||||
\section{Endomorphismen, Eigenwerte, Eigenvektoren}
|
||||
|
||||
\sideremark{Vorlesung 1}Am Ende der Vorlesung „Lineare Algebra I“ hatten wir
|
||||
folgende Situation betrachtet.
|
||||
|
||||
\begin{situation}\label{sit:LA1}%
|
||||
Es sei $k$ ein Körper, es sei $V$ ein endlich-dimensionaler Vektorraum und es
|
||||
sei $f ∈ \End(V)$ ein Endomorphismus des Vektorraumes $V$, also eine
|
||||
$k$-lineare Abbildung $f : V → V$.
|
||||
\end{situation}
|
||||
|
||||
Das Ziel war, eine angeordnete Basis $B$ von $V$ zu finden, sodass die Matrix
|
||||
$\Mat^B_B(f)$ möglichst einfach wird. Am besten wäre es, wenn die Matrix
|
||||
Diagonalgestalt hat.
|
||||
|
||||
\begin{defn}[Diagonalisierbarer Endomorphismus]
|
||||
In Situation~\ref{sit:LA1}: der Endomorphismus $f$ heißt
|
||||
\emph{diagonalisierbar}\index{diagonalisierbar!Endomorphismus}, falls es eine
|
||||
Basis $B$ von $V$ gibt, sodass $\Mat^B_B(f)$ eine Diagonalmatrix ist.
|
||||
\end{defn}
|
||||
|
||||
Einen entsprechenden Begriff hatten wir auch für Matrizen definiert.
|
||||
|
||||
\begin{defn}[Diagonalisierbare Matrix]
|
||||
Es sei $k$ ein Körper und $n ∈ ℕ$ eine Zahl. Eine $n ⨯ n$-Matrix $A$ heißt
|
||||
\emph{diagonalisierbar}\index{diagonalisierbar!Matrix}, falls sie einer
|
||||
Diagonalmatrix ähnlich ist, d. h. $∃S ∈ Gl_n(k)$, sodass $SAS^{-1}$ eine
|
||||
Diagonalmatrix ist.
|
||||
\end{defn}
|
||||
|
||||
Die zentralen Begriffe in diesem Zusammenhang waren „Eigenwert“, „Eigenvektor“
|
||||
und „Eigenraum“.
|
||||
|
||||
\begin{defn}[Eigenwert]
|
||||
Situation wie in \ref{sit:LA1}. Ein Skalar $λ ∈ k$ heißt \emph{Eigenwert von
|
||||
$f$}\index{Eigenwert}, wenn es einen Vektor $\vec{v} ∈ V ∖ \{\vec{0}\}$
|
||||
gibt, sodass $f(\vec{v}) = λ\vec{v}$ ist.
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Eigenraum]
|
||||
Situation wie in \ref{sit:LA1}. Gegeben ein Skalar $λ ∈ k$, dann nenne
|
||||
$$
|
||||
V_{λ} := \{ \vec{v} ∈ V \:|\: f(\vec{v}) = λ \vec{v} \}
|
||||
$$
|
||||
den \emph{Eigenraum von $f$ zum Eigenwert $λ$}\index{Eigenraum}.
|
||||
\end{defn}
|
||||
|
||||
\begin{defn}[Eigenvektor]
|
||||
Situation wie in \ref{sit:LA1}. Ein Vektor $\vec{v} ∈ V ∖ \{\vec{0}\}$ heißt
|
||||
\emph{Eigenvektor von $f$}\index{Eigenvektor}, wenn es ein Skalar $λ ∈ k$
|
||||
gibt, sodass $f(\vec{v}) = λ\vec{v}$ ist.
|
||||
\end{defn}
|
||||
|
||||
Ich erinnere daran, dass der Eigenraum immer ein Untervektorraum von $V$ ist. In
|
||||
der Vorlesung hatten wir ein Verfahren betrachtet, um die Eigenwerte
|
||||
auszurechnen: Die Eigenwerte von $f$ sind genau die Nullstellen des
|
||||
charakteristischen Polynoms
|
||||
\[
|
||||
χ_f(t) := \det \bigl( f - t \Id_V \bigr).
|
||||
\]
|
||||
\textbf{Achtung!} Die Definition des charakteristischen Polynoms ist in der
|
||||
Literatur nicht ganz einheitlich. Manche Autoren bezeichnen auch das Polynom
|
||||
$\det \bigl( t \Id_V - f \bigr)$ als charakteristisches Polynom. In der Praxis
|
||||
macht das keinen Unterschied, weil sich die beiden Polynome höchstens um ein
|
||||
Vorzeichen unterscheiden und wir sowieso nur an den Nullstellen interessiert
|
||||
sind. Ich werde versuchen, durchgehend die Konvention $χ_f(t) := \det \bigl( f
|
||||
- t \Id_V \bigr)$ zu verwenden\footnote{Wie ich mich kenne, wird das aber nicht
|
||||
immer gelingen. Bitte informieren Sie mich, wenn Sie irgendwo einen
|
||||
Vorzeichenfehler sehen. Ich wurde gefragt, welche Konvention in Übungsaufgaben
|
||||
und in der Klausur verwendet werden sollen. Der Einheitlichkeit und Einfachheit
|
||||
halber wäre es schön, wenn alle die oben angegebene Konvention nutzen, aber
|
||||
eigentlich ist mir die Konvention egal. Hauptsache, ihre Lösung ist richtig und
|
||||
wir können verstehen, was Sie machen! Melden Sie sich, wenn Ihnen irgendwo
|
||||
Punkte abgezogen wurden.}.
|
||||
|
||||
\begin{erinnerung}[Komplexe Polynome zerfallen in Linearfaktoren]
|
||||
Für $k = ℂ$ gilt: Jedes Polynom hat eine Nullstelle. Insbesondere gilt, dass
|
||||
ich jedes Polynom über $ℂ$ als Produkt von linearen Polynomen schreiben kann.
|
||||
Zum Beispiel ist
|
||||
$$
|
||||
g(z) = (z - i)·(z + i)·(z + i)·(z + i)·(z - 2)·(z - 3).
|
||||
$$
|
||||
Also ist $\deg(g) = 6$ und die Nullstellen von g sind $i$, $2$ und $3$
|
||||
(jeweils mit Vielfachheit 1) sowie $-i$ (mit Vielfachheit 3).
|
||||
\end{erinnerung}
|
||||
|
||||
|
||||
\section{Algebraische und geometrische Vielfachheit}
|
||||
|
||||
Zurück zur Situation~\ref{sit:LA1}. Wenn ich nun ein Skalar $λ ∈ k$ gegeben
|
||||
habe, kann ich die folgenden zwei Zahlen betrachten.
|
||||
\begin{itemize}
|
||||
\item Die \emph{algebraische Vielfachheit von
|
||||
$λ$}\index{Vielfachheit!algebraische} ist die Vielfachheit von $λ$ als
|
||||
Nullstelle des charakteristischen Polynoms.
|
||||
|
||||
\item Die \emph{geometrische Vielfachheit von
|
||||
$λ$}\index{Vielfachheit!geometrische} ist die Dimension des Vektorraumes
|
||||
$V_{λ}$.
|
||||
\end{itemize}
|
||||
|
||||
\begin{bsp}\label{bsp:1.1}
|
||||
Es sei $k = ℂ$, es sei $V = ℂ²$ und es sei $f : V → V$ gegeben durch die
|
||||
Matrix
|
||||
$$
|
||||
\begin{pmatrix}
|
||||
2 & 3 \\ 0 & 2
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
Dann ist $χ_f(t) = (2 - t)²$. Wir betrachten das Skalar $λ = 2$. Dies ist
|
||||
eine doppelte Nullstelle des charakteristischen Polynoms und die algebraische
|
||||
Vielfachheit von $λ$ ist zwei. Auf der anderen Seite ist
|
||||
$$
|
||||
V_2 = ℂ · \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
|
||||
$$
|
||||
Also ist die geometrische Vielfachheit von $λ$ gleich eins.
|
||||
\end{bsp}
|
||||
|
||||
\begin{prop}[Vergleich von alg.\ und geom.~Vielfachheit]
|
||||
In Situation~\ref{sit:LA1} sei $λ ∈ k$ ein Skalar, dann gilt:
|
||||
$$
|
||||
\text{algebraische Vielfachheit } ≥ \text{ geometrische Vielfachheit}
|
||||
$$
|
||||
\end{prop}
|
||||
\begin{proof}
|
||||
Sei ein Skalar $λ$ gegeben. Falls geometrische Vielfachheit von $λ$ gleich
|
||||
Null ist, ist nichts zu zeigen. Sei also die geometrische Vielfachheit $d$
|
||||
größer als Null. Das bedeutet: Es gibt eine lineare unabhängige (angeordnete)
|
||||
Teilmenge $\{ \vec{v}_1, … , \vec{v}_d \} ⊂ V$, die ich zu einer
|
||||
(angeordneten) Basis $B$ von $V$ ergänzen kann. Dann ist die zugehörige
|
||||
Matrix von der Form
|
||||
$$
|
||||
\Mat^B_B (f) = \left(
|
||||
\begin{array}{lll|l}
|
||||
λ & & & \\
|
||||
& \ddots & & * \\
|
||||
& & λ \\
|
||||
\hline
|
||||
& 0 & & *
|
||||
\end{array}\right).
|
||||
$$
|
||||
Als Konsequenz ergibt sich, dass das charakteristische Polynom $χ_f$ von $f$
|
||||
die folgende Form hat,
|
||||
$$
|
||||
χ_f (t) = (t - λ)^d · \text{(weiteres, unbekanntes Polynom)}.
|
||||
$$
|
||||
Also ist die algebraische Vielfachheit von $λ$ ist mindestens gleich $d$.
|
||||
\end{proof}
|
||||
|
||||
|
||||
\section{Diagonalisierbarkeit}
|
||||
|
||||
Wie hängen Diagonalisierbarkeit und die algebraischen/geometrischen
|
||||
Vielfachheiten zusammen? Der folgende Satz gibt eine erste Antwort, zumindest
|
||||
über den komplexen Zahlen. Im folgenden Kapitel werden wir eine bessere Antwort
|
||||
kennenlernen.
|
||||
|
||||
\begin{satz}[Diagonalisierbarkeit und Vielfachheiten]\label{satz:1.1}
|
||||
In Situation~\ref{sit:LA1} sind die folgenden Aussagen äquivalent.
|
||||
\begin{enumerate}
|
||||
\item Der Endomorphismus $f$ ist diagonalisierbar.
|
||||
|
||||
\item Das charakteristische Polynom $χ_f(t)$ zerfällt in Linearfaktoren und
|
||||
für jeden Eigenwert $λ$ stimmen geometrische und algebraische Vielfachheit
|
||||
überein. \qed
|
||||
\end{enumerate}
|
||||
\end{satz}
|
||||
|
||||
Als direkte Anwendung von Satz~\ref{satz:1.1} ergibt sich, dass die Matrix aus
|
||||
Beispiel~\ref{bsp:1.1} nicht diagonalisierbar ist. Der Beweis von
|
||||
Satz~\ref{satz:1.1} verwendet folgendes Lemma.
|
||||
|
||||
\begin{lemma}\label{lem:1.1}%
|
||||
In Situation~\ref{sit:LA1} seien $λ_1, …, λ_d$ unterschiedliche Eigenwerte von
|
||||
$f$. Weiter seien $\vec{v}_1, …, \vec{v}_d$ seien zugehörige Eigenvektoren.
|
||||
Dann ist die Menge $\{\vec{v}_1, …, \vec{v}_d \}$ linear unabhängig. \qed
|
||||
\end{lemma}
|
||||
|
||||
Sie sollten versuchen, Satz~\ref{satz:1.1} und Lemma~\ref{lem:1.1} selbst zu
|
||||
beweisen. Der Beweis von Lemma~\ref{lem:1.1} funktioniert mit Induktion nach
|
||||
$d$. Die Auflösung finden Sie in \video{1-1} und \video{1-2}.
|
||||
|
||||
% !TEX root = LineareAlgebra2
|
||||
|
143
Funktionentheorie.tex
Normal file
143
Funktionentheorie.tex
Normal file
@@ -0,0 +1,143 @@
|
||||
\documentclass[german, a4paper]{scrreprt}
|
||||
|
||||
%
|
||||
% Local font definitions -- need to come first
|
||||
%
|
||||
\usepackage{libertine}
|
||||
%\usepackage[libertine]{newtxmath}
|
||||
|
||||
%
|
||||
% Standard macro packages
|
||||
%
|
||||
\usepackage{amstext}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage[mark]{gitinfo2}
|
||||
\usepackage{tikz}
|
||||
\usepackage{tikz-cd}
|
||||
\tikzset{commutative diagrams/arrow style=Latin Modern}
|
||||
\tikzset{xyz/.style={x={(-.385cm,-.385cm)},y={(1cm,0cm)},z={(0cm,1cm)}}, flaeche/.style={fill=red!10,opacity=.5}}
|
||||
\usetikzlibrary{quotes,babel,angles,calc}
|
||||
\usepackage{svg}
|
||||
|
||||
\input{stdPreamble}
|
||||
\usepackage{makeidx}
|
||||
\makeindex
|
||||
|
||||
%\DeclareTOCStyleEntries[indent=0pt,dynnumwidth,numsep=1em]{default}{figure,table}
|
||||
|
||||
\title{Funktionentheorie}
|
||||
\author{Prof.~Dr.~Stefan Kebekus}
|
||||
|
||||
\DeclareMathOperator{\ad}{ad}
|
||||
\DeclareMathOperator{\Bij}{Bij}
|
||||
\DeclareMathOperator{\End}{End}
|
||||
\DeclareMathOperator{\Hau}{Hau}
|
||||
\DeclareMathOperator{\Mat}{Mat}
|
||||
\DeclareMathOperator{\rang}{rang}
|
||||
\DeclareMathOperator{\sgn}{sgn}
|
||||
\DeclareMathOperator{\spur}{spur}
|
||||
|
||||
\newcommand\video[1]{\href{https://cplx.vm.uni-freiburg.de/storage/Lehre/Vorlesungen/LA2/#1-Video.mp4}{Erklärvideo #1} \href{https://cplx.vm.uni-freiburg.de/storage/Lehre/Vorlesungen/LA2/#1-Skript.pdf}{(Skript)}}
|
||||
|
||||
\theoremstyle{plain}
|
||||
\newtheorem{aufgabe}[thm]{Aufgabe}
|
||||
\newtheorem{satz}[thm]{Satz}
|
||||
\newtheorem{situation}[thm]{Situation}
|
||||
\newtheorem{lemma}[thm]{Lemma}
|
||||
\newtheorem{kor}[thm]{Korollar}
|
||||
\newtheorem{definition}[thm]{Definition}
|
||||
\newtheorem{fakt}[thm]{Fakt}
|
||||
\newtheorem{proposition}[thm]{Proposition}
|
||||
\newtheorem{prov}[thm]{Provokation}
|
||||
\theoremstyle{remark}
|
||||
\newtheorem{bemerkung}[thm]{Bemerkung}
|
||||
\newtheorem{beobachtung}[thm]{Beobachtung}
|
||||
\newtheorem{konstruktion}[thm]{Konstruktion}
|
||||
\newtheorem{bsp}[thm]{Beispiel}
|
||||
\newtheorem{frage}[thm]{Frage}
|
||||
\newtheorem{erinnerung}[thm]{Erinnerung}
|
||||
\newtheorem{erkl}[thm]{Erklärung}
|
||||
\newtheorem{claim-de}[thm]{Vorüberlegung}
|
||||
|
||||
% sideremark
|
||||
\newcommand\sideremark[1]{\marginpar
|
||||
[
|
||||
\hskip .45in
|
||||
\begin{minipage}{1.25in}
|
||||
\textsf #1
|
||||
\end{minipage}
|
||||
]
|
||||
{
|
||||
\hskip -.075in
|
||||
\begin{minipage}{1.25in}
|
||||
\textsf #1
|
||||
\end{minipage}
|
||||
}}
|
||||
|
||||
|
||||
\makeatletter
|
||||
\hypersetup{
|
||||
pdftitle={\@title},
|
||||
pdfstartview={Fit},
|
||||
pdfpagelayout={TwoColumnRight},
|
||||
pdfpagemode={UseOutlines},
|
||||
bookmarks,
|
||||
colorlinks,
|
||||
linkcolor=linkblue,
|
||||
citecolor=linkred,
|
||||
urlcolor=linkred
|
||||
}
|
||||
\makeatother
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
% spell checker language
|
||||
\selectlanguage{german}
|
||||
|
||||
|
||||
\maketitle
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\bigskip
|
||||
|
||||
\bigskip
|
||||
|
||||
\bigskip
|
||||
|
||||
\section*{Vorbemerkung}
|
||||
|
||||
Dieses Skript zur Vorlesung „Funktionentheorie“ wird ständig weiter geschrieben.
|
||||
Sie finden die neueste Version dieses Skripts immer auf der
|
||||
\href{https://nextcloud.cplx.vm.uni-freiburg.de/index.php/s/anr7bxB4aEdabiz}{Nextcloud}.
|
||||
|
||||
Beim Schreiben werden uns ganz bestimmt ein paar Fehler unterlaufen. Falls Sie
|
||||
ein Problem entdecken oder sich nicht sicher sind, sprechen Sie einen
|
||||
Mitarbeiter an oder melden Sie sich bitte direkt per E-Mail bei
|
||||
\href{mailto:stefan.kebekus@math.uni-freiburg.de}{Stefan Kebekus}. Wir
|
||||
korrigieren schnellstmöglich!
|
||||
|
||||
Es gibt im Internet eine große Zahl von guten Quellen, Erklärvideos und anderem.
|
||||
Wenn Sie eine gute Quelle finden, melden Sie sich bitte. Wir fügen gerne einen
|
||||
Link in den Text ein.
|
||||
|
||||
|
||||
%
|
||||
% Das ist Stefan's Teil. Hier bitte nur Fehlerkorrekturen.
|
||||
%
|
||||
\part{Endomorphismen}
|
||||
|
||||
\input{01-Wiederholung}
|
||||
|
||||
\addchap{Lizenz}
|
||||
|
||||
Dieser Text ist unter der Lizenz
|
||||
\href{https://creativecommons.org/licenses/by/4.0}{CC-BY 4.0} verfügbar.
|
||||
|
||||
|
||||
\printindex
|
||||
|
||||
\end{document}
|
5
deploy.sh
Executable file
5
deploy.sh
Executable file
@@ -0,0 +1,5 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
latexmk --pdf LineareAlgebra2.tex
|
||||
cp LineareAlgebra2.pdf public/LineareAlgebra2.pdf
|
377
stdPreamble.tex
Normal file
377
stdPreamble.tex
Normal file
@@ -0,0 +1,377 @@
|
||||
%
|
||||
% PACKAGES
|
||||
%
|
||||
|
||||
% Standard Packages
|
||||
\usepackage{babel}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{newunicodechar}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{varioref}
|
||||
\usepackage[arrow,curve,matrix]{xy}
|
||||
|
||||
% Graphics Packages
|
||||
\usepackage{colortbl}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{tikz}
|
||||
|
||||
|
||||
% Font packages
|
||||
\usepackage{mathrsfs}
|
||||
|
||||
|
||||
%
|
||||
% GENERAL TYPESETTING
|
||||
%
|
||||
|
||||
% Colours for hyperlinks
|
||||
\definecolor{linkred}{rgb}{0.7,0.2,0.2}
|
||||
\definecolor{linkblue}{rgb}{0,0.2,0.6}
|
||||
|
||||
% Limit table of contents to section titles
|
||||
\setcounter{tocdepth}{1}
|
||||
|
||||
% Numbering of figures (see below for numbering of equations)
|
||||
\numberwithin{figure}{section}
|
||||
|
||||
% Add an uparrow to the bibliography entries, just before the back-list of references
|
||||
\usepackage[hyperpageref]{backref}
|
||||
\renewcommand{\backref}[1]{$\uparrow$~#1}
|
||||
|
||||
% Numbering of parts in roman numbers
|
||||
\renewcommand\thepart{\Roman{part}}
|
||||
|
||||
% Sloppy formatting -- often looks better
|
||||
\sloppy
|
||||
|
||||
% Changes the layout of descriptions and itemized lists. The indent specified in
|
||||
% the original amsart style is too much for my taste.
|
||||
\setdescription{labelindent=\parindent, leftmargin=2\parindent}
|
||||
\setitemize[1]{labelindent=\parindent, leftmargin=2\parindent}
|
||||
\setenumerate[1]{labelindent=0cm, leftmargin=*, widest=iiii}
|
||||
|
||||
%
|
||||
% Input characters
|
||||
%
|
||||
|
||||
\newunicodechar{א}{\ensuremath{\aleph}}
|
||||
\newunicodechar{α}{\ensuremath{\alpha}}
|
||||
\newunicodechar{β}{\ensuremath{\beta}}
|
||||
\newunicodechar{χ}{\ensuremath{\chi}}
|
||||
\newunicodechar{δ}{\ensuremath{\delta}}
|
||||
\newunicodechar{ε}{\ensuremath{\varepsilon}}
|
||||
\newunicodechar{Δ}{\ensuremath{\Delta}}
|
||||
\newunicodechar{η}{\ensuremath{\eta}}
|
||||
\newunicodechar{γ}{\ensuremath{\gamma}}
|
||||
\newunicodechar{Γ}{\ensuremath{\Gamma}}
|
||||
\newunicodechar{ι}{\ensuremath{\iota}}
|
||||
\newunicodechar{κ}{\ensuremath{\kappa}}
|
||||
\newunicodechar{λ}{\ensuremath{\lambda}}
|
||||
\newunicodechar{Λ}{\ensuremath{\Lambda}}
|
||||
\newunicodechar{ν}{\ensuremath{\nu}}
|
||||
\newunicodechar{μ}{\ensuremath{\mu}}
|
||||
\newunicodechar{ω}{\ensuremath{\omega}}
|
||||
\newunicodechar{Ω}{\ensuremath{\Omega}}
|
||||
\newunicodechar{π}{\ensuremath{\pi}}
|
||||
\newunicodechar{Π}{\ensuremath{\Pi}}
|
||||
\newunicodechar{φ}{\ensuremath{\phi}}
|
||||
\newunicodechar{Φ}{\ensuremath{\Phi}}
|
||||
\newunicodechar{ψ}{\ensuremath{\psi}}
|
||||
\newunicodechar{Ψ}{\ensuremath{\Psi}}
|
||||
\newunicodechar{ρ}{\ensuremath{\rho}}
|
||||
\newunicodechar{σ}{\ensuremath{\sigma}}
|
||||
\newunicodechar{Σ}{\ensuremath{\Sigma}}
|
||||
\newunicodechar{τ}{\ensuremath{\tau}}
|
||||
\newunicodechar{θ}{\ensuremath{\theta}}
|
||||
\newunicodechar{Θ}{\ensuremath{\Theta}}
|
||||
\newunicodechar{ξ}{\ensuremath{\xi}}
|
||||
\newunicodechar{Ξ}{\ensuremath{\Xi}}
|
||||
\newunicodechar{ζ}{\ensuremath{\zeta}}
|
||||
|
||||
\newunicodechar{ℓ}{\ensuremath{\ell}}
|
||||
\newunicodechar{ï}{\"{\i}}
|
||||
|
||||
\newunicodechar{𝔸}{\ensuremath{\bA}}
|
||||
\newunicodechar{𝔹}{\ensuremath{\bB}}
|
||||
\newunicodechar{ℂ}{\ensuremath{\bC}}
|
||||
\newunicodechar{𝔻}{\ensuremath{\bD}}
|
||||
\newunicodechar{𝔼}{\ensuremath{\bE}}
|
||||
\newunicodechar{𝔽}{\ensuremath{\bF}}
|
||||
\newunicodechar{𝔾}{\ensuremath{\bG}}
|
||||
\newunicodechar{ℕ}{\ensuremath{\bN}}
|
||||
\newunicodechar{ℙ}{\ensuremath{\bP}}
|
||||
\newunicodechar{ℚ}{\ensuremath{\bQ}}
|
||||
\newunicodechar{ℝ}{\ensuremath{\bR}}
|
||||
\newunicodechar{𝕏}{\ensuremath{\bX}}
|
||||
\newunicodechar{ℤ}{\ensuremath{\bZ}}
|
||||
\newunicodechar{𝒜}{\ensuremath{\sA}}
|
||||
\newunicodechar{ℬ}{\ensuremath{\sB}}
|
||||
\newunicodechar{𝒞}{\ensuremath{\sC}}
|
||||
\newunicodechar{𝒟}{\ensuremath{\sD}}
|
||||
\newunicodechar{ℰ}{\ensuremath{\sE}}
|
||||
\newunicodechar{ℱ}{\ensuremath{\sF}}
|
||||
\newunicodechar{𝒢}{\ensuremath{\sG}}
|
||||
\newunicodechar{ℋ}{\ensuremath{\sH}}
|
||||
\newunicodechar{𝒥}{\ensuremath{\sJ}}
|
||||
\newunicodechar{ℒ}{\ensuremath{\sL}}
|
||||
\newunicodechar{ℳ}{\ensuremath{\sM}}
|
||||
\newunicodechar{𝒪}{\ensuremath{\sO}}
|
||||
\newunicodechar{𝒬}{\ensuremath{\sQ}}
|
||||
\newunicodechar{𝒮}{\ensuremath{\sS}}
|
||||
\newunicodechar{𝒯}{\ensuremath{\sT}}
|
||||
\newunicodechar{𝒲}{\ensuremath{\sW}}
|
||||
|
||||
\newunicodechar{∂}{\ensuremath{\partial}}
|
||||
\newunicodechar{∇}{\ensuremath{\nabla}}
|
||||
|
||||
\newunicodechar{↺}{\ensuremath{\circlearrowleft}}
|
||||
\newunicodechar{∞}{\ensuremath{\infty}}
|
||||
\newunicodechar{⊕}{\ensuremath{\oplus}}
|
||||
\newunicodechar{⊗}{\ensuremath{\otimes}}
|
||||
\newunicodechar{•}{\ensuremath{\bullet}}
|
||||
\newunicodechar{Λ}{\ensuremath{\wedge}}
|
||||
\newunicodechar{↪}{\ensuremath{\into}}
|
||||
\newunicodechar{→}{\ensuremath{\to}}
|
||||
\newunicodechar{↦}{\ensuremath{\mapsto}}
|
||||
\newunicodechar{⨯}{\ensuremath{\times}}
|
||||
\newunicodechar{∪}{\ensuremath{\cup}}
|
||||
\newunicodechar{∩}{\ensuremath{\cap}}
|
||||
\newunicodechar{⊋}{\ensuremath{\supsetneq}}
|
||||
\newunicodechar{⊇}{\ensuremath{\supseteq}}
|
||||
\newunicodechar{⊃}{\ensuremath{\supset}}
|
||||
\newunicodechar{⊊}{\ensuremath{\subsetneq}}
|
||||
\newunicodechar{⊆}{\ensuremath{\subseteq}}
|
||||
\newunicodechar{⊂}{\ensuremath{\subset}}
|
||||
\newunicodechar{⊄}{\ensuremath{\not \subset}}
|
||||
\newunicodechar{≥}{\ensuremath{\geq}}
|
||||
\newunicodechar{≠}{\ensuremath{\neq}}
|
||||
\newunicodechar{≫}{\ensuremath{\gg}}
|
||||
\newunicodechar{≪}{\ensuremath{\ll}}
|
||||
|
||||
\newunicodechar{≤}{\ensuremath{\leq}}
|
||||
\newunicodechar{∈}{\ensuremath{\in}}
|
||||
\newunicodechar{∉}{\ensuremath{\not \in}}
|
||||
\newunicodechar{∖}{\ensuremath{\setminus}}
|
||||
\newunicodechar{◦}{\ensuremath{\circ}}
|
||||
\newunicodechar{°}{\ensuremath{^\circ}}
|
||||
\newunicodechar{…}{\ifmmode\mathellipsis\else\textellipsis\fi}
|
||||
\newunicodechar{·}{\ensuremath{\cdot}}
|
||||
\newunicodechar{⋯}{\ensuremath{\cdots}}
|
||||
\newunicodechar{∅}{\ensuremath{\emptyset}}
|
||||
\newunicodechar{⇒}{\ensuremath{\Rightarrow}}
|
||||
|
||||
\newunicodechar{⁰}{\ensuremath{^0}}
|
||||
\newunicodechar{¹}{\ensuremath{^1}}
|
||||
\newunicodechar{²}{\ensuremath{^2}}
|
||||
\newunicodechar{³}{\ensuremath{^3}}
|
||||
\newunicodechar{⁴}{\ensuremath{^4}}
|
||||
\newunicodechar{⁵}{\ensuremath{^5}}
|
||||
\newunicodechar{⁶}{\ensuremath{^6}}
|
||||
\newunicodechar{⁷}{\ensuremath{^7}}
|
||||
\newunicodechar{⁸}{\ensuremath{^8}}
|
||||
\newunicodechar{⁹}{\ensuremath{^9}}
|
||||
\newunicodechar{ⁱ}{\ensuremath{^i}}
|
||||
\newunicodechar{⁺}{\ensuremath{^+}}
|
||||
|
||||
\newunicodechar{⌈}{\ensuremath{\lceil}}
|
||||
\newunicodechar{⌉}{\ensuremath{\rceil}}
|
||||
\newunicodechar{⌊}{\ensuremath{\lfloor}}
|
||||
\newunicodechar{⌋}{\ensuremath{\rfloor}}
|
||||
|
||||
\newunicodechar{≅}{\ensuremath{\cong}}
|
||||
\newunicodechar{⇔}{\ensuremath{\Leftrightarrow}}
|
||||
\newunicodechar{∃}{\ensuremath{\exists}}
|
||||
\newunicodechar{±}{\ensuremath{\pm}}
|
||||
|
||||
|
||||
%
|
||||
% FONT DEFINTIONS
|
||||
%
|
||||
|
||||
% Script Font used for sheaves
|
||||
\DeclareFontFamily{OMS}{rsfs}{\skewchar\font'60}
|
||||
\DeclareFontShape{OMS}{rsfs}{m}{n}{<-5>rsfs5 <5-7>rsfs7 <7->rsfs10 }{}
|
||||
\DeclareSymbolFont{rsfs}{OMS}{rsfs}{m}{n}
|
||||
\DeclareSymbolFontAlphabet{\scr}{rsfs}
|
||||
\DeclareSymbolFontAlphabet{\scr}{rsfs}
|
||||
|
||||
% Code from mathabx.sty and mathabx.dcl, define macro \wcheck
|
||||
\DeclareFontFamily{U}{mathx}{\hyphenchar\font45}
|
||||
\DeclareFontShape{U}{mathx}{m}{n}{
|
||||
<5> <6> <7> <8> <9> <10>
|
||||
<10.95> <12> <14.4> <17.28> <20.74> <24.88>
|
||||
mathx10
|
||||
}{}
|
||||
\DeclareSymbolFont{mathx}{U}{mathx}{m}{n}
|
||||
\DeclareFontSubstitution{U}{mathx}{m}{n}
|
||||
\DeclareMathAccent{\wcheck}{0}{mathx}{"71}
|
||||
|
||||
|
||||
%
|
||||
% MATHEMATICS DEFINITIONS
|
||||
%
|
||||
|
||||
% Operators
|
||||
\DeclareMathOperator{\Aut}{Aut}
|
||||
\DeclareMathOperator{\codim}{codim}
|
||||
\DeclareMathOperator{\coker}{coker}
|
||||
\DeclareMathOperator{\const}{const}
|
||||
\DeclareMathOperator{\Ext}{Ext}
|
||||
\DeclareMathOperator{\Hom}{Hom}
|
||||
\DeclareMathOperator{\Id}{Id}
|
||||
\DeclareMathOperator{\Image}{Image}
|
||||
\DeclareMathOperator{\img}{img}
|
||||
\DeclareMathOperator{\Pic}{Pic}
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\DeclareMathOperator{\Ramification}{Ramification}
|
||||
\DeclareMathOperator{\red}{red}
|
||||
\DeclareMathOperator{\reg}{reg}
|
||||
\DeclareMathOperator{\sat}{sat}
|
||||
\DeclareMathOperator{\sEnd}{\sE\negthinspace \mathit{nd}}
|
||||
\DeclareMathOperator{\sing}{sing}
|
||||
\DeclareMathOperator{\Spec}{Spec}
|
||||
\DeclareMathOperator{\Sym}{Sym}
|
||||
\DeclareMathOperator{\supp}{supp}
|
||||
\DeclareMathOperator{\tor}{tor}
|
||||
\DeclareMathOperator{\Tor}{Tor}
|
||||
\DeclareMathOperator{\Frob}{Frob}
|
||||
|
||||
% Sheaves
|
||||
\newcommand{\sA}{\scr{A}}
|
||||
\newcommand{\sB}{\scr{B}}
|
||||
\newcommand{\sC}{\scr{C}}
|
||||
\newcommand{\sD}{\scr{D}}
|
||||
\newcommand{\sE}{\scr{E}}
|
||||
\newcommand{\sF}{\scr{F}}
|
||||
\newcommand{\sG}{\scr{G}}
|
||||
\newcommand{\sH}{\scr{H}}
|
||||
\newcommand{\sHom}{\scr{H}\negthinspace om}
|
||||
\newcommand{\sI}{\scr{I}}
|
||||
\newcommand{\sJ}{\scr{J}}
|
||||
\newcommand{\sK}{\scr{K}}
|
||||
\newcommand{\sL}{\scr{L}}
|
||||
\newcommand{\sM}{\scr{M}}
|
||||
\newcommand{\sN}{\scr{N}}
|
||||
\newcommand{\sO}{\scr{O}}
|
||||
\newcommand{\sP}{\scr{P}}
|
||||
\newcommand{\sQ}{\scr{Q}}
|
||||
\newcommand{\sR}{\scr{R}}
|
||||
\newcommand{\sS}{\scr{S}}
|
||||
\newcommand{\sT}{\scr{T}}
|
||||
\newcommand{\sU}{\scr{U}}
|
||||
\newcommand{\sV}{\scr{V}}
|
||||
\newcommand{\sW}{\scr{W}}
|
||||
\newcommand{\sX}{\scr{X}}
|
||||
\newcommand{\sY}{\scr{Y}}
|
||||
\newcommand{\sZ}{\scr{Z}}
|
||||
|
||||
% C-infty sheaves
|
||||
\newcommand{\cA}{\mathcal A}
|
||||
\newcommand{\cC}{\mathcal C}
|
||||
\newcommand{\cD}{\mathcal D}
|
||||
\newcommand{\cE}{\mathcal E}
|
||||
\newcommand{\cM}{\mathcal M}
|
||||
\newcommand{\cN}{\mathcal N}
|
||||
\newcommand{\cV}{\mathcal V}
|
||||
|
||||
% Blackboard Bold Symbols
|
||||
\newcommand{\bA}{\mathbb{A}}
|
||||
\newcommand{\bB}{\mathbb{B}}
|
||||
\newcommand{\bC}{\mathbb{C}}
|
||||
\newcommand{\bD}{\mathbb{D}}
|
||||
\newcommand{\bE}{\mathbb{E}}
|
||||
\newcommand{\bF}{\mathbb{F}}
|
||||
\newcommand{\bG}{\mathbb{G}}
|
||||
\newcommand{\bH}{\mathbb{H}}
|
||||
\newcommand{\bI}{\mathbb{I}}
|
||||
\newcommand{\bJ}{\mathbb{J}}
|
||||
\newcommand{\bK}{\mathbb{K}}
|
||||
\newcommand{\bL}{\mathbb{L}}
|
||||
\newcommand{\bM}{\mathbb{M}}
|
||||
\newcommand{\bN}{\mathbb{N}}
|
||||
\newcommand{\bO}{\mathbb{O}}
|
||||
\newcommand{\bP}{\mathbb{P}}
|
||||
\newcommand{\bQ}{\mathbb{Q}}
|
||||
\newcommand{\bR}{\mathbb{R}}
|
||||
\newcommand{\bS}{\mathbb{S}}
|
||||
\newcommand{\bT}{\mathbb{T}}
|
||||
\newcommand{\bU}{\mathbb{U}}
|
||||
\newcommand{\bV}{\mathbb{V}}
|
||||
\newcommand{\bW}{\mathbb{W}}
|
||||
\newcommand{\bX}{\mathbb{X}}
|
||||
\newcommand{\bY}{\mathbb{Y}}
|
||||
\newcommand{\bZ}{\mathbb{Z}}
|
||||
|
||||
% Sans serif symbols
|
||||
\newcommand{\aB}{{\sf B}}
|
||||
\newcommand{\aD}{{\sf D}}
|
||||
\newcommand{\aE}{{\sf E}}
|
||||
\newcommand{\aF}{{\sf F}}
|
||||
|
||||
|
||||
% Theorem type environments
|
||||
\theoremstyle{plain}
|
||||
\newtheorem{thm}{Theorem}[section]
|
||||
\newtheorem{aassumption}[thm]{Additional Assumption}
|
||||
\newtheorem{conjecture}[thm]{Conjecture}
|
||||
\newtheorem{cor}[thm]{Corollary}
|
||||
\newtheorem{defn}[thm]{Definition}
|
||||
\newtheorem{fact}[thm]{Fact}
|
||||
\newtheorem{lem}[thm]{Lemma}
|
||||
\newtheorem{lemDef}[thm]{Lemma and Definition}
|
||||
\newtheorem{lemNot}[thm]{Lemma and Notation}
|
||||
\newtheorem{problem}[thm]{Problem}
|
||||
\newtheorem{prop}[thm]{Proposition}
|
||||
\newtheorem{setup}[thm]{Setup}
|
||||
\newtheorem{subthm}[thm]{Sub-Theorem}
|
||||
\newtheorem{summary}[thm]{Summary}
|
||||
\theoremstyle{remark}
|
||||
\newtheorem{assumption}[thm]{Assumption}
|
||||
\newtheorem{asswlog}[thm]{Assumption w.l.o.g.}
|
||||
\newtheorem{claim}[thm]{Claim}
|
||||
\newtheorem{c-n-d}[thm]{Claim and Definition}
|
||||
\newtheorem{consequence}[thm]{Consequence}
|
||||
\newtheorem{construction}[thm]{Construction}
|
||||
\newtheorem{computation}[thm]{Computation}
|
||||
\newtheorem{example}[thm]{Example}
|
||||
\newtheorem{explanation}[thm]{Explanation}
|
||||
\newtheorem{notation}[thm]{Notation}
|
||||
\newtheorem{obs}[thm]{Observation}
|
||||
\newtheorem{rem}[thm]{Remark}
|
||||
\newtheorem{question}[thm]{Question}
|
||||
\newtheorem*{rem-nonumber}{Remark}
|
||||
\newtheorem{setting}[thm]{Setting}
|
||||
\newtheorem{warning}[thm]{Warning}
|
||||
|
||||
% Numbering of equations. Number equation subordniate to theorems.
|
||||
\numberwithin{equation}{thm}
|
||||
|
||||
% Style for enumerated lists. The following makes sure that enumerated lists are
|
||||
% numbered in the same way as equations are.
|
||||
\setlist[enumerate]{label=(\thethm.\arabic*), before={\setcounter{enumi}{\value{equation}}}, after={\setcounter{equation}{\value{enumi}}}}
|
||||
|
||||
% Shorthand notations
|
||||
\newcommand{\into}{\hookrightarrow}
|
||||
\newcommand{\onto}{\twoheadrightarrow}
|
||||
\newcommand{\wtilde}{\widetilde}
|
||||
\newcommand{\what}{\widehat}
|
||||
|
||||
%
|
||||
% HYPENTATION
|
||||
%
|
||||
|
||||
\hyphenation{uni-tärer}
|
||||
|
||||
|
||||
%
|
||||
% SPECIALIZED MACROS
|
||||
%
|
||||
|
||||
% CounterStep - increases equation counter
|
||||
\newcommand\CounterStep{\addtocounter{thm}{1}\setcounter{equation}{0}}
|
||||
|
||||
% factor - quotient groups
|
||||
\newcommand{\factor}[2]{\left. \raise 2pt\hbox{$#1$} \right/\hskip -2pt\raise -2pt\hbox{$#2$}}
|
Reference in New Issue
Block a user