Working on lecture 3
This commit is contained in:
5
.vscode/ltex.hiddenFalsePositives.de-DE.txt
vendored
5
.vscode/ltex.hiddenFalsePositives.de-DE.txt
vendored
@@ -3,3 +3,8 @@
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QEs ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"UPPERCASE_SENTENCE_START","sentence":"^\\Qist.\\E$"}
|
||||
{"rule":"GERMAN_SPELLER_RULE","sentence":"^\\QEine Abbildung \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q heißt bei \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q differenzierbar mit Ableitungsmatrix \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\QMat\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q, wenn \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Implikation \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist exakt die Aussage von Konsequenz \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Umkehrrichtung lasse ich als Hausaufgabe, damit Sie sich an die Definitionen und Sätze der Vorlesung „Analysis II“ erinnern.\\E$"}
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Cauchy-Riemannschen Differenzialgleichungen sind so wichtig, dass sich eine eigene Notation entwickelt hat.\\E$"}
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Funktion \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist bei \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q differenzierbar und es ist \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
||||
{"rule":"GERMAN_WORD_REPEAT_BEGINNING_RULE","sentence":"^\\QDie Funktion \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q ist bei \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q differenzierbar und die Ableitungsmatrix ist eine Drehstreckung.\\E$"}
|
||||
|
Reference in New Issue
Block a user