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1. Introduction

Chapter Info
Rev.: # 725
Date: 06.05.2024
Time: 10:37
By: kebekus

1.1. Intro. PENDING: Explain what the Albanese is good for and why we want to have
it for C-pairs. This is clearly homework for Erwan.

Approval
Erwan —
Stefan —

1.2. Main results. This paper addresses the problem of constructing Albanese maps for

C-pairs. The Albanese of a projective manifold 𝑋 is characterized by universal properties

that can be formulated in a number of ways, relating to the geometry or topology of 𝑋 .

Our presentation follows Serre, who defines the Albanese of a compact Kähler manifold

𝑋 is a compact torus Alb(𝑋 ), together with a morphism alb : 𝑋 → Alb(𝑋 ) such that any

other morphism from 𝑋 to a compact torus factors via alb, [Ser59] but see also [Wit08,

Appendix A]. More generally, we recall in Section 4 that the Albanese of a logarithmic

pair (𝑋, 𝐷) is a semitoric variety 𝐴◦ ⊂ 𝐴, together with a quasi-algebraic morphism

alb : 𝑋 \𝐷 → 𝐴◦
such that any other quasi-algebraic morphism from𝑋 \𝐷 to a semitoric

variety factors via alb.
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2 STEFAN KEBEKUS AND ERWAN ROUSSEAU

Approval
Erwan —
Stefan —C-semitoric varieties. For C-pairs (𝑋, 𝐷), we argue that the natural analogues of com-

pact tori and semitoric varieties are “C-semitoric varieties”, that is, quotients of tori and

semitoric varieties, with their natural structure as a quotient C-pair. Section 8 introduces

C-semitoric varieties and discusses their main properties. The following non-trivial result

suggests that C-semitoric varieties are a geometrically meaningful concept.

Theorem 1.1 (Precise statement in Theorem 8.4). Quasi-algebraic C-morphisms between
C-semitoric varieties come from group morphisms. □

Following Serre, we define the Albanese of a C-pair (𝑋, 𝐷) as a universal, quasi-

algebraic C-morphism from (𝑋, 𝐷) to a C-semitoric variety.Approval
Erwan —
Stefan — The Albanese irregularity. It turns out that the existence of an Albanese is tied to an

invariant of independent interest, the “Albanese irregularity”

𝑞+
Alb

(𝑋, 𝐷) ∈ N ∪ {∞}.
The Albanese irregularity is bounded from above by the augmented irregularity 𝑞+ (𝑋, 𝐷),
which measures the dimension of the space of adapted differentials on suitable high cov-

ers. It differs from the augmented irregularity in that it considers only those adapted

differentials that are induced by morphisms to semitoric varieties. Part II of this paper

defines and discusses the Albanese irregularity and the associated “Albanese of a cover”

in great detail. As one of our major results, we will prove near the end of this paper that

special pairs have bounded Albanese irregularity.

Theorem 1.2 (Precise statement in Theorem 7.1 and Remark 7.3). If (𝑋, 𝐷) is special in
the sense of Campana, then 𝑞+

Alb
(𝑋, 𝐷) ≤ dim𝑋 . □

In spite of the notion’s obvious importance, we do not fully understand the geometric

meaning of the (potentially strict) inequality 𝑞+ (𝑋, 𝐷) ≤ 𝑞+
Alb

(𝑋, 𝐷). Section 10 gathers a

number of open questions.Approval
Erwan —
Stefan — The Albanese of a C-pair. With all preparations in place, the main result of our paper

is now formulated as follows.

Theorem 1.3. Let (𝑋, 𝐷) be a nc C-pair, where 𝑋 is a compact Kähler manifold. Then, the
following statements are equivalent.

(1.3.1) An Albanese of the C-pair (𝑋, 𝐷) exists.
(1.3.2) The Albanese irregularity is finite, 𝑞+

Alb
(𝑋, 𝐷) < ∞. □

We speculate that if 𝑞+
Alb

(𝑋, 𝐷) = ∞, it might still make sense to define an Albanese in

the broader setup of ind-varieties. Again, we refer to Section 10 for open questions.

Preview: Pairs with high irregularity. In the forthcoming paper [KR24b], we develop

the beginnings of a Nevanlinna theory for C-pairs, with the goal to study hyperbolicity

properties of pairs with high irregularity. A first application generalizes the classic Bloch-

Ochiai theorem, [Kaw80, Thm. 2], to C-pairs: If 𝑞+
Alb

(𝑋, 𝐷) > dim𝑋 , then every C-entire

curve (C, 0) → (𝑋, 𝐷) is algebraically degenerate
1
. Erwan: say a word why this is cool.Approval

Erwan —
Stefan — 1.3. Acknowledgements. We would like to thank Oliver Bräunling, Lukas Braun,

Michel Brion, Johan Commelin, Andreas Demleitner, and Wolfgang Soergel for long dis-

cussions. Pedro Núñez pointed us to several mistakes in early versions of the paper. Jörg

Winkelmann patiently answered our questions throughout the work on this project.

Date: 21st May 2024.

2020 Mathematics Subject Classification. 32C99, 32H99, 32A22.

Key words and phrases. C-pairs, Albanese variety.
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1
We explicitly include the case where 𝑞+

Alb
(𝑋,𝐷 ) = ∞.
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Part I. Preparation

2. Notation and standard facts

Chapter Info
Rev.: # 719
Date: 29.04.2024
Time: 14:01
By: kebekus

Approval
Erwan —
Stefan —

2.1. Global conventions. This paper works in the category of complex analytic spaces,

though all the material in this paper will work in the complex-algebraic setting, often with

less involved definitions and proofs. With very few exceptions, we follow the notation

of the standard reference texts [GR84, Dem12, NW14]. An analytic variety is a reduced,

irreducible complex space. For clarity, we refer to holomorphic maps between analytic

varieties as morphisms and reserve the word map for meromorphic mappings.

We use the language of C-pairs, as surveyed in [KR24a], and freely refer to definitions

and results from [KR24a] throughout the present text. The reader might wish to keep a

hardcopy within reach. Approval
Erwan yes
Stefan yes2.2. Quasi-algebraic morphisms. Let𝑋 and𝑌 be normal analytic varieties. In contrast

to the algebraic setting, it is generally not possible to extend a morphism between Zariski

open subsets to a meromorphic map between 𝑋 and 𝑌 : the exponential map does not

extend to a meromorphic map P1 d P1
. Morphisms that do extend meromorphically will

be of special interest. Following [NW14], we refer to them as quasi-algebraic.

Definition 2.1 (Quasi-algebraic morphism). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be pairs where 𝑋
and𝑌 are compact. A morphism between the open parts,𝑋 ◦ → 𝑌 ◦, is called quasi-algebraic

with respect to the compactifications 𝑋 and 𝑌 if it extends to a meromorphic map 𝑋 d 𝑌 .

Notation 2.2 (Quasi-algebraic morphisms to C and C∗). Recall that C and C∗ admit a

unique normal compactification to P1
. If (𝑋, 𝐷𝑋 ) is a pair where 𝑋 is compact, it is there-

fore meaningful to say that a morphism to 𝑋 ◦ → C or 𝑋 ◦ → C∗ is quasi-algebraic. Ana-

logously, it makes sense to say that a function in O𝑋 (𝑋 ◦) or in O∗
𝑋
(𝑋 ◦) is quasi-algebraic.

Definition 2.3 (Family of quasi-algebraic morphisms). In the setting of Definition 2.1,
let 𝑍 be any normal analytic variety. A family of quasi-algebraic morphisms over 𝑍 is a
morphism 𝑋 ◦ × 𝑍 → 𝑌 ◦ that extends to a meromorphic map 𝑋 × 𝑍 d 𝑌 .

For lack of an adequate reference, we include proofs of the following elementary facts.

Lemma 2.4 (Elementary properties). Let (𝑋, 𝐷𝑋 ), (𝑌, 𝐷𝑌 ) and (𝑍, 𝐷𝑍 ) be pairs, where 𝑋 ,
𝑌 and 𝑍 are compact. Assume that a sequence of morphism is given,

𝑋 ◦ 𝑌 ◦ 𝑍 ◦,
𝛼◦

𝛾◦

𝛽◦

where 𝛼◦ is quasi-algebraic. Then, the following holds.
(2.4.1) If 𝛽◦ is quasi-algebraic, then 𝛾◦ is quasi-algebraic.
(2.4.2) If 𝛼◦ is dominant and 𝛾◦ is quasi-algebraic, then 𝛽◦ is quasi-algebraic.

Proof. Only (2.4.2) will be shown. Replacing 𝑋 and 𝑌 by suitable bimeromorphic models,

we may assume that there exists a commutative diagram as follows,

𝑋 𝑌 𝑍

𝑋 ◦ 𝑌 ◦ 𝑍 ◦.

𝛼 , surjective

𝛾

∃? 𝛽

𝛾◦

𝛼◦
, dominant 𝛽◦

The image Γ ⊂ 𝑌 ×𝑍 of the product morphism 𝛼 ×𝛾 : 𝑋 → 𝑌 ×𝑍 is analytic by the proper

mapping theorem. Commutativity of the diagram guarantees that Γ is bimeromorphic to

𝑌 , and hence the graph of the desired meromorphic map 𝛽 : 𝑌 d 𝑍 . □
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Quasi-algebraic morphisms to C∗ enjoy the following strong rigidity property.

Lemma 2.5 (Families of quasi-algebraic morphisms to C∗). Let (𝑋, 𝐷𝑋 ) be a pair where𝑋
are compact, let 𝑍 be any normal analytic variety and let 𝜑◦

: 𝑋 ◦ × 𝑍 → C∗ be a family of
quasi-algebraic morphisms over 𝑍 . Then, there exist functions 𝑓 ◦ ∈ O∗

𝑋
(𝑋 ◦) and 𝑔 ∈ O∗

𝑍
(𝑍 )

such that the equality 𝜑◦ (𝑥, 𝑧) = 𝑓 ◦ (𝑥) · 𝑔(𝑧) holds for every (𝑥, 𝑧) ∈ 𝑋 ◦ × 𝑍 .

Proof. Extend 𝜑◦
to a meromorphic map 𝜑 : 𝑋 × 𝑍 → P1

and view 𝜑 as a meromorphic

function. Choosing a point 𝑧0 ∈ 𝑍 , we would like to compare 𝜑 to the meromorphic

function 𝐹 (𝑥, 𝑧) := 𝜑 (𝑥, 𝑧0). For that, consider the associated principal divisors, div𝜑 and

div 𝐹 in Div(𝑋 ×𝑍 ). Both divisors are supported on (𝑋 \𝑋 ◦) ×𝑍 and are hence of product

form. Their restrictions to 𝑋 × {𝑧0} agree. It follows that the two divisors are equal, so

that𝐺 := 𝜑/𝐹 is a holomorphic function on 𝑋 ×𝑍 without zeros or poles. The function𝐺

is constant on the (compact!) fibres of the projection map𝑋 ×𝑍 → 𝑍 and hence descends

to a function 𝑔 ∈ O∗
𝑍
(𝑍 ). To conclude, set 𝑓 ◦ (𝑥) := 𝜑◦ (𝑥, 𝑧0). □

Approval
Erwan —
Stefan —

Stefan 23Apr24: In view
of pending changes, I am unsure if
this is still a correct representation of
what we are doing. Need to revise
thoroughly after everything else is in
place.

2.3. Pull-back and extension. The construction of the Albanese in Part II of this paper

requires us to consider locally uniformizable pairs (𝑋, 𝐷), to look at covers 𝑋 ↠ 𝑋 , and

to compare adapted reflexive differentials on 𝑋 with logarithmic Kähler differentials on

a resolution of the singularities. We refer the reader to [KR24a, Sect. 5.1] for further

motivation and a more detailed introduction.

The link between adapted reflexive differentials and logarithmic Kähler differentials

is given by the pull-back morphism introduced in [KR24a, Fact 5.8]. For the reader’s

convenience, we recall the pull-back result and formulate it in the precise form used later,

as an extension theorem for differential forms. The discussion considers the following

setting.

Setting 2.6. Let (𝑋, 𝐷) be a locally uniformizable C-pair. Consider a 𝑞-morphism and a

log resolution
2

of singularities,

𝑋 𝑋 𝑋 .
𝜋 , strong log resolution 𝛾 , 𝑞-morphism

We denote the logarithmic part of 𝐷 and its preimages as

Want notation compat-
ible with Setting 5.1

(2.6.1) Δ𝑋 := ⌊𝐷⌋, Δ
𝑋

:=
(
𝛾∗Δ𝑋

)
red

and Δ
𝑋

:=
(
𝜋∗𝛾∗Δ𝑋

)
red
.

Observe that these definitions are meaningful because 𝑋 is locally Q-factorial, [KR24a,

Rem. 2.31]. Finally, let 𝐸 ⊊ 𝑋 denote the 𝜋-exceptional set and let 𝑋 +
:= 𝑋 \ 𝐸 denote the

big open set over which 𝜋 is locally biholomorphic.

Remark 2.7 (Adapted reflexive differentials and logarithmic Kähler differentials). In Set-

ting 2.6, there exist natural inclusions Ω [•]
(𝑋,𝐷,𝛾 )

��
𝑋 + ⊆ Ω•

𝑋 + (logΔ
𝑋
)
��
𝑋 + .

Theorem 2.8 (Extension of adapted reflexive differentials). In Setting 2.6, there exist linear
“pull-back” maps,

(2.8.1) 𝑑C𝜋 : 𝐻 0
(
𝑋, Ω [•]

(𝑋,𝐷𝑋 ,𝛾 )
)
→ 𝐻 0

(
𝑋, Ω•

𝑋
(logΔ

𝑋
)
)
,

such that the following holds for all adapted reflexive forms 𝛼
𝑋

∈ 𝐻 0
(
𝑋, Ω [•]

(𝑋,𝐷,𝛾 )
)

with
image 𝛼

𝑋
:= (𝑑C𝜋) (𝛼𝑋 ).

(2.8.2) With the identifications of Remark 2.7, the forms 𝛼
𝑋

and 𝛼
𝑋

agree over 𝑋 +.
(2.8.3) If 𝑍 is smooth and if 𝜂 : 𝑍 → 𝑋 \ suppΔ

𝑋
is any morphism that maps 𝑍 into a

fibre of 𝜋 , then (d𝜂)𝛼
𝑋
= 0 ∈ 𝐻 0

(
𝑍, Ω

𝑝

𝑍

)
.

2
log resolution = 𝜋 is a bimeromorphic morphism between analytic varieties where 𝑋 is smooth, the 𝜋-

exceptional set 𝐸 ⊊ 𝑋 is of pure codimension one, and 𝐸 +𝜋∗𝛾∗ ⌊𝐷 ⌋ is a Q-divisor with simple normal crossing

support
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Proof. Consider the pull-back morphism for adapted reflexive differentials, as introduced

in [KR24a, Fact 5.8],

𝑑C𝜋 : 𝜋∗Ω
[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 ) → Ω

𝑝

𝑋
(logΔ

𝑋
),

and take the associated mapping at the level of sections for (2.8.1). Property (2.8.2) is

then a consequence of [KR24a, Fact 5.10] while Property (2.8.3) follows from [KR24a,

Prop. 5.16]. □

The setup of Theorem 2.8 and its proof is summarized in the following diagram, which

justifies the name “extension”,

𝐻 0
(
𝑋, Ω

𝑝

𝑋
(logΔ

𝑋
)
)

𝐻 0
(
𝑋, Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

)
𝐻 0

(
𝑋 +, Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

)
𝐻 0

(
𝑋 \ 𝐸, Ω𝑝

𝑋
(logΔ

𝑋
)
)
.

restriction

𝑋 +
is big

𝑑C𝜋 , extension

Rem. 2.7

Formulated differently, Theorem 2.8 asserts that forms on𝑋 \𝐸 = 𝑋 +
extend to logarithmic

forms on 𝑋 if they are adapted. This extension result is of course not nearly as deep as

the related results of [GKKP11] or [KS21].

3. Semitoric varieties, qasi-algebraic morphisms and groups

Chapter Info
Rev.: # 717
Date: 29.04.2024
Time: 11:50
By: kebekus

Approval
Erwan yes
Stefan yes

The Albanese of a compact Kähler manifold is a compact complex torus. We will re-

call in Section 4 that the Albanese of a logarithmic pair is a more complicated object: a

semitorus together with a preferred bimeromorphic equivalence class of a compactifica-

tion. For the reader’s convenience, we recall the relevant notions and prove a number of

elementary statements that are not readily found in the literature.

We follow conventions and the language of the textbook [NW14] and refer the reader

to [NW14, Sect. 4 and 5] for details, proofs and references to the original literature.

Definition 3.1 (Semitorus, presentation, [NW14, Def. 5.1.5 and Sect. 5.1.5]). A semitorus

is a connected commutative complex Lie group𝐴◦ that admits a surjective Lie group morph-
ism 𝜋◦

: 𝐴◦ ↠ 𝑇 , where 𝑇 is a compact complex torus and ker𝜋◦ � (C∗)×•. Lie group
morphisms of this form are called presentations of the semitorus 𝐴◦.

Remark 3.2. Semitori also appear under the name quasi-tori in the literature, [Kob98,

p. 119]. Presentations are not unique. A given semitorus might allow two different

presentations whose associated compact complex tori are hugely different. Approval
Erwan yes
Stefan yes3.1. Semitoric varieties. Semitoric varieties are the analytic analogues of Abelian vari-

eties, complex tori and toric varieties. The following definition is taken almost verbatim

from [NW14].

Definition 3.3 (Semitoric variety, [NW14, Def. 5.3.3]). A semitoric variety is a semitorus
𝐴◦ together with a smooth, equivariant compactification 𝐴◦ ⊂ 𝐴 such that the following
holds.

(3.3.1) The difference Δ𝐴 := 𝐴 \𝐴◦ is a nc divisor in the complex manifold 𝐴.
(3.3.2) There exists a presentation 𝜋◦

: 𝐴◦ ↠ 𝑇 that extends to an 𝐴◦-equivariant morph-
ism 𝜋 : 𝐴 ↠ 𝑇 .

(3.3.3) For every point 𝑡 ∈ 𝑇 the fibre 𝐴𝑡 = 𝜋
−1 (𝑡) is isomorphic to a smooth toric variety.

In other words, 𝐴𝑡 admits the structure of a smooth algebraic variety such that the
action of ker𝜋◦ on 𝐴𝑡 is algebraic.

Notation 3.4 (Semitoric varieties as logarithmic pairs). Given a semitoric variety 𝐴◦ ⊂ 𝐴,

we will often consider the associated logarithmic pair (𝐴,Δ) and write Ω
𝑝

𝐴
(logΔ), with

the implicit understanding that Δ := 𝐴 \𝐴◦
is the difference divisor. If there is more than

one semitoric variety involved in the discussion, we write (𝐴,Δ𝐴) for clarity.
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Given two semitoric varieties, 𝐴◦ ⊂ 𝐴 and 𝐵◦ ⊂ 𝐵, we follow Definition 2.1 and say

that a morphism 𝐴◦ → 𝐵◦ is quasi-algebraic if it extends to a meromorphic map 𝐴 d 𝐵.

Along similar lines, if (𝑋, 𝐷) is any pair where 𝑋 is compact, it makes sense to say that

morphisms between the open parts, 𝐴◦ → 𝑋 ◦
and 𝑋 ◦ → 𝐴◦

, are quasi-algebraic.Approval
Erwan —
Stefan — 3.2. Elementary properties. For later reference, we state several facts about quasi-

algebraic morphism between semitoric varieties. The proofs are tedious but mostly ele-

mentary, and left to the reader. In fancy words, Facts 3.5–3.7 can be seen to give an equi-

valence of categories between presentations of semitori and bimeromorphic equivalence

classes of semitoric compactifications.

Fact 3.5 (Uniqueness of presentation). The presentation of Item (3.3.2) in Definition 3.3 is
unique. More precisely, there exists a unique presentation 𝜋◦

: 𝐴◦ ↠ 𝑇 that extends to an
𝐴◦-equivariant fibre bundle 𝜋 : 𝐴 ↠ 𝑇 . □

Fact 3.6 (Existence for given presentation, [NW14, Thm. 5.1.35]). Let 𝐴◦ be a semitorus
and let 𝜋◦

: 𝐴◦ ↠ 𝑇 be a presentation. If 𝐹 is any smooth toric variety compactifying
𝐹 ◦ := (𝜋◦)−1 (0𝑇 ), then there exists a semitoric variety 𝐴◦ ⊂ 𝐴 with associated morphism
𝜋 : 𝐴 → 𝑇 where 𝜋−1 (0𝑇 ) is isomorphic to 𝐹 as an 𝐹 ◦-space. □

A group morphism between the open parts of semitoric varieties is quasi-algebraic if

and only if it respects the associated presentations. In particular, we find that the bimero-

morphic equivalence class of a semitoric compactification is uniquely determined by the

presentation.

Fact 3.7 (Quasi-algebraic group morphisms and presentations). Let 𝐴◦ ⊂ 𝐴 and 𝐵◦ ⊂ 𝐵

be two semitoric varieties, with associated morphisms 𝜋𝐴 : 𝐴 ↠ 𝑇𝐴 and 𝜋𝐵 : 𝐵 ↠ 𝑇𝐵 . If
𝜎◦ : 𝐴◦ → 𝐵◦ is any holomorphic group morphism, then the following two statements are
equivalent.

(3.7.1) The morphism 𝜎◦ is quasi-algebraic.
(3.7.2) There exists a holomorphic group morphism 𝜏 : 𝑇𝐴 → 𝑇𝐵 , where 𝜏◦𝜋𝐴 = 𝜋𝐵◦𝜎◦. □

If the equivalent conditions of Fact 3.7 hold, there is a little more that we can say: 𝜎◦

extends to a morphism between 𝐴 and 𝐵 if and only its restriction to the central fibre

extends to a morphism.

Fact 3.8 (Morphisms and bimeromorphic maps). In the setting of Fact 3.7, assume that 𝜎◦

is quasi-algebraic, with associated meromorphic map 𝜎 : 𝐴 d 𝐵. Then, the following two
statements are equivalent.

(3.8.1) The meromorphic map 𝜎 is a morphism.
(3.8.2) The meromorphic map 𝜎 |𝜋−1

𝐴
(0𝑇𝐴 ) : 𝜋−1

𝐴
(0𝑇𝐴 ) d 𝜋−1

𝐵
(0𝑇𝐵 ) is a morphism. □

On semitoric varieties, a differential form is logarithmic if and only if it is invariant.

Proposition 3.9 (Invariant differentials and logarithmic differentials). In the setting of
Definition 3.3, the following statements hold for every number 𝑝 ∈ N.

(3.9.1) The locally free sheaf Ω𝑝

𝐴
(logΔ) is free.

(3.9.2) Every 𝐴◦-invariant differential form 𝜏◦ ∈ 𝐻 0
(
𝐴◦, Ω

𝑝

𝐴◦
)

extends to a logarithmic
form 𝜏 ∈ 𝐻 0

(
𝐴, Ω

𝑝

𝐴
(logΔ)

)
.

(3.9.3) Every logarithmic form is 𝐻 0
(
𝐴, Ω

𝑝

𝐴
(logΔ)

)
is 𝐴◦-invariant.

Proof. Item (3.9.1) is [NW14, Cor. 5.4.5]. For Item (3.9.2), observe that every 𝐴◦
-invariant

differential form 𝜏◦ ∈ 𝐻 0
(
𝐴◦, Ω

𝑝

𝐴◦
)

can be written as a sum of wedge products of 1-

differentials. To prove Item (3.9.2), it will therefore suffice to consider the case 𝑝 = 1.

The group 𝐴◦
acts on itself by left multiplication. By assumption, this actions extends

to an action of 𝐴◦
on 𝐴 that stabilizes Δ. The 𝐴◦

-invariant vector fields on 𝐴◦
that are
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induced by this action will therefore extend to sections of T𝐴 (− logΔ). Using (3.9.1), the

case 𝑝 = 1 of Item (3.9.2) now follows by taking duals.

Item (3.9.3) follows from (3.9.1) and (3.9.2), given that the dimensions of the spaces

𝐻 0
(
𝐴◦, Ω

𝑝

𝐴◦
)𝐴◦

and 𝐻 0
(
𝐴,Ω

𝑝

𝐴
(logΔ)

)
agree. □

Remark 3.10 (Pull-back of logarithmic differentials I). Given a semitoric variety 𝐴◦ ⊂ 𝐴

and a nc log pair (𝑋, 𝐷), we are often interested in quasi-algebraic morphisms 𝑎◦ : 𝑋 ◦ →
𝐴◦

. Given that 𝑋 and 𝐴 are smooth and that 𝑎 is holomorphic away from a small subset

of 𝑋 , there exists a pull-back morphism for logarithmic differentials

d𝑎 : 𝐻 0
(
𝐴,Ω1

𝐴 (logΔ)
)
→ 𝐻 0

(
𝑋, Ω1

𝑋 (log𝐷)
)

that restricts on 𝑋 ◦
to the standard pull-back d𝑎◦.

Remark 3.11 (Pull-back of logarithmic differentials II). Generalizing Remark 3.10, given a

semitoric variety𝐴◦ ⊂ 𝐴, a log pair (𝑋, 𝐷) that is not necessarily nc, and a quasi-algebraic

morphism 𝑎◦ : 𝑋 ◦ → 𝐴◦
, there exists a pull-back morphism for logarithmic differentials

d𝑎 : 𝐻 0
(
𝐴,Ω1

𝐴 (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
that restricts on 𝑋 ◦

reg
to the standard pull-back d𝑎◦. Approval

Erwan yes
Stefan yes3.3. Quasi-algebraic morphisms. In contrast to the algebraic setting, a morphism

between semitori need not be a group morphism, even if it respects the neutral elements

of the group structure. For an example, consider the morphism C∗ → C∗, 𝑡 ↦→ exp(𝑡 − 1).
The situation improves for quasi-algebraic morphisms of semitoric varieties.

Proposition 3.12 (Quasi-algebraic morphisms and group morphisms). Let 𝐴◦ ⊂ 𝐴 and
𝐵◦ ⊂ 𝐵 be two semitoric varieties and let 𝑓 ◦ : 𝐴◦ → 𝐵◦ be any quasi-algebraic morphism of
analytic varieties. If 𝑓 ◦ (0𝐴◦ ) = 0𝐵◦ , then 𝑓 ◦ is a morphism of complex Lie groups.

Proof. In order to prepare for the proof, consider the associated presentations 𝜋◦
𝐴

: 𝐴◦ ↠
𝑇𝐴 and 𝜋◦

𝐵
: 𝐵◦ ↠ 𝑇𝐵 . Lemma 2.4 guarantees that the composed map 𝜋◦

𝐵
◦ 𝑓 ◦ is quasi-

algebraic. Since compact complex tori do not contain rational curves, we find that the

quasi-algebraic morphism 𝜋◦
𝐵
◦ 𝑓 ◦ factors via the (C∗)×•-fibre bundle 𝜋◦

𝐴
. We obtain a

morphism 𝑓𝑇 : 𝑇𝐴 → 𝑇𝐵 and commutative diagram as follows,

(3.12.1)

𝐴◦ 𝐵◦

𝑇𝐴 𝑇𝐵 .

𝜋◦
𝐴

𝑓 ◦

𝜋◦
𝐵

𝑓𝑇

The morphism 𝑓𝑇 maps 0𝑇𝐴 to 0𝑇𝐵 and is hence a group morphism, [NW14, Def. 5.1.36].

We would like to show that 𝑓 ◦ is a group morphism. For this, consider the auxiliary

morphism

𝜉◦ : 𝐴◦ ×𝐴◦ → 𝐵◦, (𝑥,𝑦) ↦→ 𝑓 ◦ (𝑥) + 𝑓 ◦ (𝑦) − 𝑓 ◦ (𝑥 + 𝑦).
To conclude, we need to show that 𝜉◦ ≡ 0𝐵◦ or equivalently that 𝜉◦ is constant. The

assumption that 𝑓 ◦ is quasi-algebraic and [NW14, Prop. 5.3.5] together guarantee that 𝜉◦

extends to a meromorphic map 𝜉 : 𝐴×𝐴 d 𝐵 and is hence quasi-algebraic. The following

property follows from the assumption that 𝑓 ◦ (0𝐴◦ ) = 0𝐵◦ .

(3.12.2) ∀𝑎 ∈ 𝐴◦
: 𝜉◦ (𝑎, 0𝐴◦ ) = 𝜉◦ (0𝐴◦ , 𝑎) = 0𝐵◦

There is more that we can say. If (𝑥,𝑦) ∈ 𝐴◦ ×𝐴◦
is any pair of points, then

(𝜋◦
𝐵 ◦ 𝜉◦) (𝑥,𝑦) = 𝜋◦

𝐵 (𝑓 ◦ (𝑥) + 𝑓 ◦ (𝑦) − 𝑓 ◦ (𝑥 + 𝑦)
)

definition

= (𝜋◦
𝐵 ◦ 𝑓 ◦) (𝑥) + (𝜋◦

𝐵 ◦ 𝑓 ◦) (𝑦) − (𝜋◦
𝐵 ◦ 𝑓 ◦) (𝑥 + 𝑦) 𝜋◦

𝐵 a group morphism

= (𝑓𝑇 ◦ 𝜋◦
𝐴) (𝑥) + (𝑓𝑇 ◦ 𝜋◦

𝐴) (𝑦) − (𝑓𝑇 ◦ 𝜋◦
𝐴) (𝑥 + 𝑦) Diagram (3.12.1)

= 0𝑇𝐵 𝑓𝑇 ◦ 𝜋◦
𝐴 a grp. morph.
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In summary, we find that 𝜉◦ takes its image in (𝜋◦
𝐵
)−1 (0𝑇𝐵 ). Fixing one identification

(𝜋◦
𝐵
)−1 (0𝑇𝐵 ) � (C∗)×•, Lemma 2.5 allows writing 𝜉◦ in product form. More precisely,

there exist functions 𝑎•, 𝑏• ∈ O∗
𝐴
(𝐴◦) such that

𝜉◦ (𝑥,𝑦) =
(
𝑎1 (𝑥) · 𝑏1 (𝑦), . . . , 𝑎𝑛 (𝑥) · 𝑏𝑛 (𝑦)

)
, for every (𝑥,𝑦) ∈ 𝐴◦ ×𝐴◦.

Equation (3.12.2) will then imply that 𝜉◦ is constant. □

Corollary 3.13 (Quasi-algebraic automorphisms). Let 𝐴◦ ⊂ 𝐴 be a semitoric variety.
Then, the group of quasi-algebraic automorphisms of the analytic variety 𝐴◦ decomposes as
a semidirect product (translations) ⋊ (group morphisms). □

Corollary 3.14 (Semitoric compactification with additional symmetry). Let𝐴◦ ⊂ 𝐴1 be a
semitoric variety, and let 𝐺 ⊂ Aut(𝐴◦) be a finite group of quasi-algebraic automorphisms.
Then, there exists a semitoric variety 𝐴◦ ⊂ 𝐴2, such that the following holds.

• The analytic varieties 𝐴1 and 𝐴2 are bimeromorphic.
• The 𝐺-action on 𝐴◦ extends equivariantly to 𝐴2.

Proof. As before, write 𝜋◦
: 𝐴◦ ↠ 𝑇 for the unique presentation that extends to an 𝐴◦

-

equivariant morphism 𝜋 : 𝐴 ↠ 𝑇 .

Corollary 3.13 allows us to assume without loss of generality that 𝐺 is a finite group

of quasi-algebraic group morphisms. Fact 3.7 will then guarantee that 𝐺 acts by group

morphisms on 𝑇 in a way that makes the morphism 𝜋◦
equivariant. In particular, the

𝐺-action fixes the point 0𝑇 and stabilizes the fibre 𝐹 ◦ := (𝜋◦)−1 (0𝑇 ) � (C∗)×•. Toric

geometry will then allow choosing
3

a 𝐺-equivariant toric compactification 𝐹 ◦ ⊂ 𝐹 , and

Fact 3.6 presents us with a semitoric compactification𝐴◦ ⊂ 𝐴2, fibred over𝑇 with typical

fibre 𝐹 . Fact 3.7 ensures that 𝐴1 and 𝐴2 are bimeromorphic, and Fact 3.8 asserts that the

𝐺-action on 𝐴◦
extends equivariantly to 𝐴2. □

Approval
Erwan —
Stefan — 3.4. Quasi-algebraic subgroups. In analogy to the notion of a quasi-algebraic morph-

ism, a quasi-algebraic subgroup of a semitorus is a subgroup that extends to an analytic

set in a preferred compactification. A full discussion of this notion is found in [NW14,

Sect. 5.3.4].

Definition 3.15 (Quasi-algebraic subgroup, [NW14, Def. 5.3.14]). Given a semitoric vari-
ety 𝐴◦ ⊂ 𝐴, an analytic subgroup 𝐻 ◦ ⊂ 𝐴◦ is called quasi-algebraic for the semitoric

compactification 𝐴◦ ⊂ 𝐴 if the topological closure of 𝐻 ◦ in 𝐴 is an analytic subset.
Approval
Erwan —
Stefan — 3.4.1. Elementary properties. We state two facts about quasi-algebraic subgroups for later

reference. The elementary proofs are left to the reader.

Fact 3.16 (Quasi-algebraic subgroups are semitori, [NW14, Prop. 5.3.13]). In the setting
of Definition 3.15, quasi-algebraic subgroups are again semitori. □

Warning 3.17 (Analytic subgroups need not be semitori). Despite claims to the contrary

in the literature, cf. [Kob98, Lem. 3.8.18], closed analytic subgroups of semitori need not

be semitori in general. See [NW14, Ex. 5.1.44] and the references there for an example.

The following fact implies that the notion “quasi-algebraic subgroup” depends only on

the bimeromorphic equivalence class of a semitoric compactification.

Fact 3.18 (Dependence on choice of compactification). Let 𝐴◦ be a semitorus, and let
𝐴◦ ⊂ 𝐴1 and 𝐴◦ ⊂ 𝐴2 be two bimeromorphic semitoric compactifications. Then, a subgroup
𝐻 ◦ ⊂ 𝐴◦ is quasi-algebraic for the semitoric compactification 𝐴◦ ⊂ 𝐴1 if and only if it is
quasi-algebraic for the semitoric compactification 𝐴◦ ⊂ 𝐴2. □
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Approval
Erwan —
Stefan — 3.4.2. Lattice structure. As usual in algebra, quasi-algebraic subgroups for a complete lat-

tice. We refrain from going into any details here and state the only fact that will be

relevant for us later.

Fact 3.19 (Existence of a smallest group). In the setting of Definition 3.15, the intersection
of arbitrarily many quasi-algebraic subgroups is quasi-algebraic. In particular, given any
subset 𝐼 ⊆ 𝐴◦, there exists a unique smallest quasi-algebraic subgroup that contains 𝐼 . □ Approval

Erwan —
Stefan —3.4.3. Quotients. Semitoric varieties are stable under quotients by quasi-algebraic groups,

in the following sense.

Fact 3.20 (Existence of a quotients, [NW14, Thm. 5.3.13]). Let 𝐴◦ ⊂ 𝐴 be a semitoric
variety and let 𝐻 ◦ ⊆ 𝐴◦ be a quasi-algebraic subgroup. Then, the quotient 𝑄◦

:= 𝐴◦/𝐻 ◦ is
a semitorus and there exists a semitoric compactification 𝑄◦ ⊂ 𝑄 that renders the quotient
morphism 𝑞◦ : 𝐴◦ ↠ 𝑄◦ quasi-algebraic. □ Approval

Erwan —
Stefan —3.4.4. Examples. Throughout this paper, quasi-algebraic subgroups appear as kernels of

quasi-algebraic group morphisms and as fixed point sets of quasi-algebraic group action.

We recall the relevant facts.

Fact 3.21 (Kernels of quasi-algebraic group morphisms). Let 𝐴◦ ⊂ 𝐴 and 𝐵◦ ⊂ 𝐵 be
two semitoric varieties and let 𝛼◦ : 𝐴◦ → 𝐵◦ be any quasi-algebraic morphism of complex
Lie groups. Then, ker(𝛼◦) ⊂ 𝐴◦ is quasi-algebraic for the semitoric compactification 𝐴◦ ⊂
𝐴. □

Proposition 3.22 (Fixed points of quasi-algebraic groups actions). Let𝐴◦ ⊂ 𝐴 be a semi-
toric variety and let {𝑒} ⊊ 𝐺 ⊊ Aut(𝐴◦) be a finite group that acts on𝐴◦ by quasi-algebraic
automorphisms. If

∅ ⊊ 𝑋 ⊆ {®𝑎 ∈ 𝐴◦
: isotropy 𝐺 ®𝑎 is not trivial}

is any irreducible complex subspace, then 𝑋 is contained in the translate of a proper quasi-
algebraic subgroup of 𝐴◦.

Proof. Since 𝐺 is finite, there will be an element 𝑔 ∈ 𝐺 \ {𝑒} that fixes 𝑋 pointwise.

Shrinking𝐺 and enlarging 𝑋 , we may therefore assume without loss of generality that𝐺

is cyclic, 𝐺 = ⟨𝑔⟩, and that 𝑋 is a component of Fix(𝐺).
Recall from Proposition 3.12 that the action of 𝑔 on 𝐴◦

is of the form

𝑔 : 𝐴◦ → 𝐴◦, ®𝑎 ↦→ 𝜑◦ ( ®𝑎) − ®𝑎0

where 𝜑◦
: 𝐴◦ → 𝐴◦

is a quasi-algebraic group morphism and ®𝑎0 ∈ 𝐴◦
is a constant. It

follows that ®𝑎 ∈ Fix(𝑔) if and only if

(
𝜑◦ − Id𝐴◦

)
( ®𝑎) = ®𝑎0. If ®𝑥 ∈ 𝑋 is any element, this

implies that

Fix(𝐺) = ker(𝜑◦ − Id𝐴◦ ) + ®𝑥 .
But by Fact 3.21, the components of ker(𝜑◦ − Id𝐴◦ ) are translates of quasi-algebraic sub-

groups. □

4. The Albanese of a logarithmic pair

Chapter Info
Rev.: # 717
Date: 29.04.2024
Time: 11:50
By: kebekus

Approval
Erwan —
Stefan —

To prepare for the slightly involved constructions later in this paper, we recall a num-

ber of facts about the Albanese for logarithmic pairs, including full proof for lack of a

reference that discusses the Albanese construction in the singular Kähler case. We refer

the reader to [Ser59] and [Wit08, Appendix A] for very general results in the algebraic

setting and to [NW14, Sect. 4.5] and [Fuj24] for details concerning the Albanese of an snc

pair.

3
Since 𝐺 is finite, every fan can be refined to become stable under the action of 𝐺 on 𝑁R.
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Setting 4.1. Let (𝑋, 𝐷) be a log pair where 𝑋 is compact. In line with [KR24a, Nota-

tion 2.11], denote the open part by 𝑋 ◦
:= 𝑋 \ 𝐷 . Let 𝑥 ∈ 𝑋 ◦

be any point.

Definition 4.2 (The Albanese for compact log pairs). Assume Setting 4.1. An Albanese
of (𝑋, 𝐷) is a semitoric variety Alb𝑥 (𝑋, 𝐷)◦ ⊂ Alb𝑥 (𝑋, 𝐷) together with a quasi-algebraic
morphism

alb𝑥 (𝑋, 𝐷)◦ : 𝑋 ◦ → Alb𝑥 (𝑋, 𝐷)◦

that sends 𝑥 to 0Alb𝑥 (𝑋,𝐷 )◦ and that satisfies the following universal property. If 𝐴◦ ⊂ 𝐴 is
any semitoric variety and 𝑎◦ : 𝑋 ◦ → 𝐴◦ is any quasi-algebraic morphism that sends 𝑥 to
0𝐴◦ , then 𝑎◦ factors uniquely via a quasi-algebraic morphism 𝑏◦ of Lie groups,

(4.2.1) 𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ 𝐴◦,

alb𝑥 (𝑋,𝐷 )◦

𝑎◦

∃!𝑏◦

Remark 4.3 (Quasi-Albanese). The Albanese of an snc logarithmic pair also appears under

the name “quasi-Albanese” in the literature.

Remark 4.4 (Compactification and presentation of Alb𝑥 (𝑋, 𝐷)◦). In the setting of Defin-

ition 4.2, recall from Facts 3.5 and 3.7 that the semitoric compactification Alb𝑥 (𝑋, 𝐷)◦ ⊂
Alb𝑥 (𝑋, 𝐷) defines a unique presentation of the semitorus Alb𝑥 (𝑋, 𝐷)◦. The con-

struction in Section 4.2 will show that this presentation equals the natural morphism

Alb𝑥 (𝑋, 𝐷)◦ ↠ Alb𝑥 (𝑋 ) induced by the universal property.

Explanation 4.5. The reader coming from algebraic geometry might wonder why Defin-

ition 4.2 is so complicated. The reason is this: if 𝑉 ◦
is a smooth, quasi-projective variety

and if 𝑉 ◦ ⊂ 𝑉1 and 𝑉 ◦ ⊂ 𝑉2 are two projective compactifications, then 𝑉1 and 𝑉2 are

birational and there exists a third compactification that dominates both.

This is no longer true in complex geometry, where two compactifications need not

necessarily be bimeromorphic, and where the bimeromorphic equivalence class of a par-

ticular compactification is often part of the data. Along these lines, the Albanese is not just

the semitorus Alb𝑥 (𝑋, 𝐷)◦, but the semitorus together with a bimeromorphic equivalence

class of a compactification Alb𝑥 (𝑋, 𝐷). The word “quasi-algebraic” that appears all over

Definition 4.2 ensures that all morphisms respect the classes of the compactifications.Approval
Erwan —
Stefan — 4.1. Uniqueness. The universal property of the Albanese guarantees that Alb𝑥 (𝑋, 𝐷)◦

and alb𝑥 (𝑋, 𝐷)◦ are unique up to unique isomorphism. The equivariant compactifica-

tion Alb𝑥 (𝑋, 𝐷) is bimeromorphically unique. Following the classics, we abuse notation

and refer to any Albanese as “the Albanese”, with associated semitoric Albanese variety
Alb𝑥 (𝑋, 𝐷)◦ ⊂ Alb𝑥 (𝑋, 𝐷) and Albanese morphism alb𝑥 (𝑋, 𝐷)◦. Fact 3.18 on page 8 al-

lows talking about subgroups of Alb𝑥 (𝑋, 𝐷)◦ that are quasi-algebraic for Alb𝑥 (𝑋, 𝐷)◦ ⊂
Alb𝑥 (𝑋, 𝐷).

Approval
Erwan —
Stefan — 4.2. Existence. The existence of an Albanese is well-known for snc pairs, but hardly

discussed in the literature for arbitrary Kähler pairs. We briefly recall the arguments in

the snc setting, use resolutions of singularities to construct a candidate for the Albanese in

general and prove that this candidate satisfies the properties spelled out in Definition 4.2

above.

Proposition 4.6 (Existence of the Albanese of a Kähler log pair). In Setting 4.1, assume
that 𝑋 is Kähler. Then, an Albanese of (𝑋, 𝐷) exists.

We begin the proof by recalling the classic construction for snc pairs. For singular

pairs, Construction 4.7 will show how to build an Albanese for a resolution of singularit-

ies. We conclude the proof of Proposition 4.6 on page 12, showing that Construction 4.7

does indeed satisfy the necessary universal property.
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Proof of Proposition 4.6 is (𝑋, 𝐷) is snc. If the pair (𝑋, 𝐷) of Setting 4.1 is snc, then con-

sider the group morphism

𝑖 : 𝜋1 (𝑋 ◦, 𝑥) → 𝐻 0
(
𝑋, Ω1

𝑋 (log𝐷)
)∗

obtained by path integration. Set

Alb𝑥 (𝑋, 𝐷)◦ := 𝐻 0
(
𝑋, Ω1

𝑋
(log𝐷)

)∗/
img(𝑖)

and define alb𝑥 (𝑋, 𝐷)◦ by path integration. Hodge theory guarantees that Alb𝑥 (𝑋, 𝐷)◦
is a semitorus. It admits a presentation as a principal (C∗)×•-bundle over Alb𝑥 (𝑋 ), and

hence by Fact 3.6 on page 6 an equivariant compactification Alb𝑥 (𝑋, 𝐷) as a (P1)×•-bundle

over Alb𝑥 (𝑋 ). A local computation shows that alb𝑥 (𝑋, 𝐷)◦ is quasi-algebraic for this

compactification. More precisely, it extends to a meromorphic map𝑋 d Alb𝑥 (𝑋, 𝐷) that

is holomorphic on the big open subset 𝑋 \ (supp𝐷)sing. We refer the reader to [NW14,

Sect. 4] for details and proofs. □

Construction 4.7 (Construction of the Albanese of a log pair). Assume the setting of Pro-

position 4.6. For the reader’s convenience, we subdivided the construction into relatively

independent steps.

Step 1 in Construction 4.7, Resolution of singularities. Choose a log-resolution 𝜋 : 𝑋 ↠ 𝑋

and a point 𝑥 ∈ 𝜋−1 (𝑥). Consider the reduced, snc divisor 𝐷 := supp𝜋−1 (𝐷) on 𝑋 and

write 𝑋 ◦
:= 𝑋 \ 𝐷 . Step 0 provides us with an Albanese that we briefly denote as

(4.7.1)

𝑋 𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦︸         ︷︷         ︸

=:𝐴◦

Alb𝑥 (𝑋, 𝐷)︸       ︷︷       ︸
=:𝐴

𝑋 𝑋 ◦.

𝜋 , log resolution

⊇

𝜋◦

𝑎◦ := alb𝑥 (𝑋,𝐷 )◦

quasi-algebraic

⊆

⊇

Step 2 in Construction 4.7, Quotients by subgroups of𝐴◦. If 𝐻 ◦ ⊆ 𝐴◦
is any quasi-algebraic

subgroup, recall from Fact 3.20 that the quotient

𝐴◦
𝐻 ◦ := 𝐴◦

/
𝐻 ◦

is a semitorus and there exists a semitoric compactification 𝐴◦
𝐻 ◦ ⊂ 𝐴𝐻 ◦ that renders the

quotient morphism 𝑞◦
𝐻 ◦ : 𝐴◦ ↠ 𝐴◦

𝐻 ◦ quasi-algebraic. If the composed map

𝑞◦𝐻 ◦ ◦ 𝑎◦ : 𝑋 ◦ → 𝐴◦
𝐻

is constant on 𝜋◦
-fibers, then the composed map factors via 𝜋◦

, and we obtain an exten-

sion of Diagram (4.7.1) as follows,

(4.7.2)

𝑋 𝑋 ◦ 𝐴◦ 𝐴

𝑋 𝑋 ◦ 𝐴◦
𝐻 ◦ 𝐴𝐻 ◦

𝜋 , log resolution

⊇

𝜋◦

𝑎◦ , quasi-algebraic

𝑞◦
𝐻◦

⊆

𝑞𝐻◦

⊇
𝑎◦
𝐻◦

⊆

Lemma 2.4 guarantees that 𝑎◦
𝐻 ◦ is again quasi-algebraic.
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Step 3 in Construction 4.7, Identifying a suitable subgroup of 𝐴◦. Aiming to construct an

Albanese for (𝑋, 𝐷) using the construction of Step 2, we need to find a quasi-algebraic

subgroup 𝐻 ◦ ⊆ 𝐴◦
to which Step 2 can be applied. To this end, consider the set of all

subgroups that satisfy the assumptions of Step 2,

H ◦
:= {𝐵◦ ⊆ 𝐴◦

quasi-algebraic : 𝑞◦𝐵◦ ◦ 𝑎◦ is constant on 𝜋◦
-fibers}.

Take𝐻 ◦
as the infimum of H ◦

in the complete lattice of all quasi-algebraic subgroups𝐴◦
.

In other words, define

𝐻 ◦
:=

⋂
𝐵◦∈H◦

𝐵◦

and recall from Fact 3.19 hat 𝐻 ◦
is indeed a quasi-algebraic subgroup. With this choice,

observe that 𝑞◦
𝐻 ◦ ◦ 𝑎◦ is again constant on 𝜋◦

-fibers, so that 𝐻 ◦
is in fact the minimal

element of H ◦
. Step 2 equips us with a semitoric compactification 𝐴◦

𝐻 ◦ ⊂ 𝐴𝐻 ◦ and a

diagram of Form (4.7.2). Write Alb𝑥 (𝑋, 𝐷)◦ ⊂ Alb𝑥 (𝑋, 𝐷) for 𝐴◦
𝐻 ◦ ⊆ 𝐴𝐻 ◦ and denote the

quasi-algebraic morphism 𝑎◦
𝐻 ◦ by

alb𝑥 (𝑋, 𝐷)◦ : 𝑋 ◦ → Alb𝑥 (𝑋, 𝐷)◦.

Construction 4.7 ends here.

Proof of Proposition 4.6. It remains to show that the varieties and morphism of Construc-

tion 4.7 satisfy the conditions spelled out in Definition 4.2 above. The condition that

alb𝑥 (𝑋, 𝐷)◦ sends 𝑥 ∈ 𝑋 ◦
to 0 ∈ Alb𝑥 (𝑋, 𝐷)◦ clearly holds by construction.

Next, assume that 𝐴◦ ⊂ 𝐴 is a semitoric variety and 𝑎◦ : 𝑋 ◦ → 𝐴◦
is a quasi-algebraic

morphism that sends 𝑥 to 0𝐴◦ . Item (2.4.1) of Lemma 2.4 guarantees that 𝑎◦◦𝜋◦
: 𝑋 ◦ → 𝐴◦

is quasi-algebraic. The universal property of the Albanese Alb𝑥 (𝑋, 𝐷)◦ of the snc pair

(𝑋, 𝐷) thus gives us a unique quasi-algebraic morphism 𝑏◦ of Lie groups that makes the

following diagram commute,

(4.8.1)

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ 𝐴◦.

alb𝑥 (𝑋,𝐷 )◦

𝜋◦ 𝑞◦
𝐻◦

∃!𝑏◦

alb𝑥 (𝑋,𝐷 )◦

𝑎◦

want: 𝑏◦

Since the composed map

𝑏◦ ◦ alb𝑥 (𝑋,𝐷)◦ = alb𝑥 (𝑋,𝐷)◦ ◦ 𝜋◦

is constant on 𝜋◦
-fibres, the choice of 𝐻 ◦

in Step 3 of Construction 4.7 immediately guar-

antees that

ker𝑞◦𝐻 ◦ = 𝐻
◦ ⊆ ker𝑏◦.

It follows that there is a unique Lie group morphism 𝑏◦ : Alb𝑥 (𝑋, 𝐷)◦ → 𝐴◦
that makes

the diagram commute. Item (2.4.2) of Lemma 2.4 guarantees that 𝑏◦ is quasi-algebraic, as

desired. □Approval
Erwan —
Stefan —

4.3. Additional properties. The Albanese has numerous properties that we will use in

the sequel. While all of those necessarily follow from the universal property that determ-

ines the Albanese uniquely, we find it often easier to refer to use the concrete construction

of the Albanese in 4.7, which quickly reduces us to the snc setting where all results are

known and readily citable.

Proposition 4.9 (Image of alb generates Alb). In Setting 4.1, assume that 𝑋 is Kähler.
Then, the image of alb𝑥 (𝑋, 𝐷)◦ generates Alb𝑥 (𝑋, 𝐷)◦ as an Abelian group.
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Proof. If (𝑋, 𝐷) is snc, this is [NW14, Prop. 4.5.11]. In general, consider Diagram (4.7.2)

of Construction 4.7, use that the img alb𝑥 (𝑋, 𝐷)◦ generates Alb𝑥 (𝑋, 𝐷)◦ and that the quo-

tient map

𝑞◦𝐻 ◦ : Alb𝑥 (𝑋, 𝐷)◦ → Alb𝑥 (𝑋, 𝐷)◦

is surjective. □

Proposition 4.10 (Group actions). In Setting 4.1, assume that 𝑋 is Kähler. Given a finite
subgroup𝐺 of Aut(𝑋, 𝐷), there exists an Albanese Alb𝑥 (𝑋, 𝐷)◦ ⊂ Alb𝑥 (𝑋, 𝐷) where𝐺 acts
on the pair (Alb𝑥 (𝑋, 𝐷),ΔAlb𝑥 (𝑋,𝐷 )◦ ) in a way that makes the morphisms

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ Alb𝑥 (𝑋, 𝐷) Alb𝑥 (𝑋 )

alb𝑥 (𝑋,𝐷 )◦

equivariant.

Proof. The group actions on Alb𝑥 (𝑋, 𝐷)◦ are of course induced by the universal property.

In fact, given any automorphism 𝑔 ∈ Aut(𝑋, 𝐷), consider the diagram

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ Alb𝑥 (𝑋, 𝐷)◦,

𝑔

alb𝑥 (𝑋,𝐷 )◦

∃!𝜎 (𝑔)

alb𝑥 (𝑋,𝐷 )◦ tr−𝑔 (𝑥 )

where tr• is addition by • and where 𝜎 (𝑔) is the quasi-algebraic morphism of semitori

that comes out of the universal property. An elementary computation shows that the

morphism

Aut(𝑋, 𝐷) → Aut

(
Alb𝑥 (𝑋, 𝐷)◦

)
, 𝑔 ↦→ tr𝑔 (𝑥 ) ◦𝜎 (𝑔)

is indeed a group morphism that makes the morphism to Alb𝑥 (𝑋 ) equivariant. Corol-

lary 3.14 on page 8 allows finding a 𝐺-equivariant, semitoric compactification. □ Approval
Erwan —
Stefan —4.3.1. Resolution of singularities. Construction 4.7 makes it easy to compare the Albanese

of a pair with the Albanese of a resolution of singularities. To begin, we observe that a

surjection of pairs induces a surjection between the Albanese varieties.

Observation 4.11 (Surjective morphisms). Let (𝑋, 𝐷𝑋 ) and (𝑌, 𝐷𝑌 ) be two log pairs, where

𝑋 and 𝑌 are compact Kähler spaces. Given a quasi-algebraic surjection 𝜑◦
: 𝑋 ◦ ↠ 𝑌 ◦

and

two points𝑦 ∈ 𝑌 ◦
, 𝑥 ∈ (𝜑◦)−1 (𝑦), the universal property of the Albanese yields a diagram

of the form

𝑋 ◦
Alb𝑥 (𝑋, 𝐷𝑋 )◦

𝑌 ◦
Alb𝑦 (𝑌, 𝐷𝑌 )◦,

alb𝑥 (𝑋,𝐷𝑋 )◦

𝜑◦
alb(𝜑◦ )

alb𝑦 (𝑌,𝐷𝑌 )◦

where alb(𝜑◦) is a quasi-algebraic Lie group morphism. The image of alb(𝜑◦) is a sub-

group that contains the image of alb𝑦 (𝑌, 𝐷𝑌 )◦ and hence generates Alb𝑦 (𝑌, 𝐷𝑌 )◦ as a

group. It follows that alb(𝜑◦) is surjective.

Proposition 4.12 (The Albanese and the Albanese of a log resolution). In Setting 4.1,
assume that 𝑋 is Kähler. Let 𝜋 : 𝑋 → 𝑋 be a log resolution of the pair (𝑋, 𝐷). Choose
a point 𝑥 ∈ 𝜋−1 (𝑥), consider the reduced divisor 𝐷 := supp𝜋−1 (𝐷) and the associated
diagram

(4.12.1)

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦.

alb𝑥 (𝑋,𝐷 )◦

𝜋◦
alb(𝜋◦ )

alb𝑥 (𝑋,𝐷 )◦
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In particular, observe that

(4.12.2) dim Alb𝑥 (𝑋, 𝐷)◦ ≤ dim Alb𝑥 (𝑋, 𝐷)◦.
If 𝑋 ◦ has only rational singularities, then alb(𝜋◦) is isomorphic and Inequality (4.14.2) is an
equality.

Proof. The assumption that 𝑋 ◦
has only rational singularities implies that every form

𝜎 ∈ 𝐻 0
(
𝑋 ◦, Ω1

𝑋

)
vanishes when restricted to the smooth locus of any 𝜋◦

-fibre, [Nam01,

Lem. 1.2]. This applies in particular to differential forms coming from Alb𝑥 (𝑋, 𝐷)◦. Since

the cotangent bundle of Alb𝑥 (𝑋, 𝐷)◦ is free, we find that alb𝑥 (𝑋,𝐷)◦ maps 𝜋◦
-fibres to

points. The map alb𝑥 (𝑋,𝐷)◦ therefore factors via 𝜋◦
, and the group𝐻 ◦

of Construction 4.7

is therefore trivial, 𝐻 ◦ = {0}. □Approval
Erwan —
Stefan — 4.3.2. Description in terms of differentials. As in the classic case, the Albanese of a singular

pair can be described in terms of differentials, as a Lie group quotient of a dualized space

of one-forms. The following observation makes this statement precise.

Observation 4.13 (Presentation of the Albanese as a Lie group quotient). In Setting 4.1,

assume that 𝑋 is Kähler. Let 𝜋 : 𝑋 → 𝑋 be a log resolution of the pair (𝑋, 𝐷). Choose a

point 𝑥 ∈ 𝜋−1 (𝑥) and consider the reduced divisor 𝐷 := supp𝜋−1 (𝐷). Since 𝜋 is surject-

ive, the push-forward of any torsion-free sheaf is torsion-free, and we obtain an injection

(4.13.1) 𝜋∗Ω
1

𝑋
(log𝐷) ↩→ Ω [1]

𝑋
(log𝐷),

which presents Alb𝑥 (𝑋, 𝐷)◦ as a Lie group quotient,

𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)∗
↠ 𝐻 0

(
𝑋, Ω1

𝑋
(log𝐷)

)∗
dual of (4.13.1)(4.13.2)

↠ Alb𝑥 (𝑋, 𝐷)◦ quotient by 𝑖
(
𝜋1 (𝑋 ◦, 𝑥)

)
(4.13.3)

↠ Alb𝑥 (𝑋, 𝐷)◦ quotient by quasi-algebraic.(4.13.4)

The pull-back morphism for logarithmic differentials introduced in Remark 3.11 on page 7,

d alb𝑥 (𝑋, 𝐷) : 𝐻 0

(
Ω1

Alb𝑥 (𝑋,𝐷 ) (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
,

is the induced map between dual Lie algebras, hence injective. Observation 4.13 ends

here.

Corollary 4.14 (Dimension of Alb). In Setting 4.1, assume that 𝑋 is Kähler. Then, the
dimension Alb𝑥 (𝑋, 𝐷)◦ satisfies the inequality

(4.14.1) dim Alb𝑥 (𝑋, 𝐷)◦ ≤ ℎ0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)
.

If the pair (𝑋, 𝐷) is Du Bois and if 𝑋 ◦ has rational singularities, then (4.14.1) is an equality.

Proof. The inequality follows directly from Observation 4.13 above. Assuming that (𝑋, 𝐷)
is Du Bois and that 𝑋 ◦

has rational singularities, we show that the composed surjection

(4.13.2)–(4.13.4) has a discrete kernel.

To begin, recall that since 𝑋 ◦
has rational singularities, Proposition 4.12 asserts that

(4.13.4) is an isomorphism. Its kernel is hence trivial. The kernel of (4.13.3) is discrete.

We claim that (4.13.2) is likewise isomorphic. To this end, decompose (4.13.1) as

(4.14.2) 𝜋∗Ω
1

𝑋
(log𝐷) 𝑎

↩→ 𝜋∗Ω
1

𝑋
(log𝐷 + Exc𝜋) 𝑏

↩→ Ω [1]
𝑋

(log𝐷).
Recall from [KS21, Cor. 1.8, Rem. 1.9] that 𝑎 is isomorphic because 𝑋 ◦

has rational singu-

larities. Recall from [GK14, Thm. 4.1] that 𝑏 is isomorphic because (𝑋, 𝐷) is Du Bois. □

Remark 4.15 (Relation to Minimal Model Theory). Recall the classic results that log-

canonical pairs are Du Bois and that the space underlying a log-terminal pair has rational

singularities. Corollary 4.14 will therefore give an equality if the pair (𝑋, 𝐷) is dlt in the

sense of Minimal Model Theory, [KM98, Def. 2.37].
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Remark 4.16 (Improvements). Corollary 4.14 is probably not optimal. Using the notion of

“weakly rational singularities” introduced in [KS21, Sect. 1.4] and the extension results

of [Par23, Tig23], the assumptions on rational singularities might be weakened, at the

expense of introducing technically challenging singularity classes, [KM98, Thm. 5.23] and

[Kol13, Sect. 6.2].

We leave the proof of the following fact to the reader.

Fact 4.17 (Image of d𝑎 and ker(𝑏)). In Setting 4.1, assume that 𝑋 is Kähler. Given a fac-
torization as in Diagram (4.2.1), consider the linear subspace

𝑊 := img

(
d𝑎 : 𝐻 0

(
𝐴,Ω1

𝐴 (logΔ𝐴)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

) )
,

write𝑊 ⊥ ⊆ 𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)∗ for its annihilator and recall from Observation 4.13 above
that there exists a natural surjection of Lie groups

𝜂 : 𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)∗
↠ Alb𝑥 (𝑋, 𝐷)◦.

Then, ker(𝑏◦) = 𝜂
(
𝑊 ⊥) . □ Approval

Erwan —
Stefan —4.4. Examples. The following example shows that the Inequalities (4.12.2) and (4.14.1)

will generally be strict, even for pairs with no boundary and with the simplest log-

canonical singularities.

Example 4.18 (Strict inequalities). Consider closed immersions 𝐸 ⊊ P2 ⊊ P3
where 𝐸 is

an elliptic curve and where P2
is linearly embedded into P3

. Let 𝑋 ⊂ P3
be the projective

cone over 𝐸 and let 𝑥 ∈ 𝑋reg be any point. Since 𝑋 is rationally connected, morphisms

to semitori will necessarily be constant. It follows that the Albanese will be trivial. Next,

let 𝜋 : 𝑋 → 𝑋 be the resolution of singularities, obtained as the blow-up of the unique

singular point in 𝑋 . Set 𝑥 := 𝜋−1 (𝑥). Since 𝑋 is a P1
-bundle over 𝐸 and its Albanese

equals 𝐸. The following diagram summarizes the situation,

𝑋 Alb𝑥 (𝑋, 𝐷) 𝐸

𝑋 Alb𝑥 (𝑋, 𝐷) {0}.

alb𝑥 (𝑋,𝐷 )

𝜋 alb(𝜋 )

=

alb𝑥 (𝑋,𝐷 )
=

Inequality (4.12.2) is strict in this case. The inequalities

1 = ℎ0
(
𝐸, Ω1

𝐸

)
≤ ℎ0

(
𝑋, Ω1

𝑋

)
= ℎ0

(
𝑋, 𝜋∗Ω

1

𝑋

)
≤ ℎ0

(
𝑋, Ω [1]

𝑋

)
show that (4.14.1) is likewise strict.

Part II. The Albanese of a cover

5. The Albanese of a cover and the Albanese irregularity

Chapter Info
Rev.: # 730
Date: 13.05.2024
Time: 10:56
By: kebekus

Approval
Erwan —
Stefan —

Stefan 30Jun23: Some-
where in this section, we might want
to add Erwan’s remarks on the Al-
banese and Prym varieties.

Generalizing the Albanese of a logarithmic pair, we show the existence of an Albanese

for every cover𝑋 ↠ 𝑋 of a given pair (𝑋, 𝐷). Recalling that the Albanese of a logarithmic

pair is a “universal” morphism to a semitoric variety that induces all logarithmic differen-

tials, we define the Albanese of a cover as a “universal” morphism from 𝑋 to a semitoric

variety such that every pull-back differential is adapted. We consider the following setting

throughout the present section.

Setting 5.1. Let (𝑋, 𝐷) be a C-pair where 𝑋 is compact and let 𝛾 : 𝑋 ↠ 𝑋 be a cover of

(𝑋, 𝐷). Consider the reduced divisor

𝐷 :=
(
𝛾∗⌊𝐷⌋

)
red

∈ Div(𝑋 ),

write 𝑋 ◦
:= 𝑋 \ supp𝐷 , and let 𝑥 ∈ 𝑋 ◦

be a point.
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We underline that Setting 5.1 does not assume that 𝛾 is adapted, that 𝑋 is smooth,

or that 𝛾∗𝐷 has nc support. The following definition of the Albanese will therefore use

adapted reflexive differentials.

Definition 5.2 (The Albanese of a cover of a C-pair). Assume Setting 5.1. An Albanese

of (𝑋, 𝐷,𝛾) is a semitoric variety Alb𝑥 (𝑋, 𝐷,𝛾)◦ ⊂ Alb𝑥 (𝑋, 𝐷,𝛾) together with a quasi-
algebraic morphism

alb𝑥 (𝑋, 𝐷,𝛾)◦ : 𝑋 ◦ → Alb𝑥 (𝑋, 𝐷,𝛾)◦

such that the following holds.

(5.2.1) The morphism alb𝑥 (𝑋, 𝐷,𝛾)◦ sends 𝑥 to 0 ∈ Alb𝑥 (𝑋, 𝐷,𝛾)◦.
(5.2.2) The pull-back morphism for logarithmic differentials of Remark 3.11,

𝐻 0

(
Ω1

Alb𝑥 (𝑋,𝐷,𝛾 ) (logΔ)
)

d alb𝑥 (𝑋,𝐷,𝛾 )
−−−−−−−−−−→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
,

takes its image in the subspace 𝐻 0
(
𝑋, Ω [1]

(𝑋,𝐷,𝛾 )
)
⊆ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
.

(5.2.3) If 𝐴◦ ⊂ 𝐴 is any semitoric variety, if 𝑎◦ : 𝑋 ◦ → 𝐴◦ is quasi-algebraic, sends 𝑥 to
0𝐴◦ , and if the pull-back morphism

d𝑎 : 𝐻 0
(
𝐴, Ω1

𝐴 (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
takes its image in 𝐻 0

(
𝑋, Ω [1]

(𝑋,𝐷,𝛾 )
)
, then 𝑎 factors uniquely as

𝑋 ◦
Alb𝑥 (𝑋, 𝐷,𝛾)◦ 𝐴◦,

alb𝑥 (𝑋,𝐷,𝛾 )◦

𝑎◦

∃!𝑏◦

where 𝑏◦ is a quasi-algebraic morphism of semitori.

Remark 5.3 (Pull-back of 𝑝-differentials). Item (5.2.2) of Definition 5.2 can be phrased

in terms of sheaf morphisms. Recall from [NW14, Cor. 5.4.5] that the locally free sheaf

Ω1

Alb𝑥 (𝑋,𝐷,𝛾 ) (logΔ) is free and hence globally generated. Item (5.2.2) is therefore equival-

ent to the following, seemingly stronger statement: If 𝑝 is any number, then the composed

pull-back morphism

(alb𝑥 (𝑋, 𝐷,𝛾)◦)∗ Ω
𝑝

Alb𝑥 (𝑋,𝐷,𝛾 )◦ → Ω
[𝑝 ]
𝑋 ◦

takes its image in the subsheaf Ω
[𝑝 ]
(𝑋 ◦,𝐷◦,𝛾 ) ⊆ Ω

[𝑝 ]
𝑋 ◦ .

Approval
Erwan —
Stefan —

5.1. The Albanese irregularity. Given a C-pair (𝑋, 𝐷) and a cover 𝛾 : 𝑋 ↠ 𝑋 , the

dimension of the Albanese is an important invariant of the triple (𝑋, 𝐷,𝛾).

Definition 5.4 (Albanese irregularity, augmented Albanese irregularity). Assume Set-
ting 5.1. If an Albanese exists, then refer to the number

𝑞Alb (𝑋, 𝐷,𝛾) := dim Alb𝑥 (𝑋, 𝐷,𝛾)◦

as the Albanese irregularity of (𝑋, 𝐷,𝛾). The number

𝑞+
Alb

(𝑋, 𝐷) = sup

{
𝑞Alb (𝑋, 𝐷,𝛾) | 𝛾 a cover

}
∈ N ∪ {∞}

is the augmented Albanese irregularity of the C-pair (𝑋, 𝐷).

We will show in Section 7 that the augmented Albanese irregularity 𝑞+
Alb

(𝑋, 𝐷) is finite

if 𝑋 is Kähler and if the C-pair (𝑋, 𝐷) is special.
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Approval
Erwan —
Stefan — 5.2. Uniqueness and existence. As before, the universal property spelled out in

Item (5.2.3) implies that Alb𝑥 (𝑋, 𝐷,𝛾)◦ is unique up to unique isomorphism. The com-

pactification Alb𝑥 (𝑋, 𝐷,𝛾) is bimeromorphically unique. As before, we abuse notation

and refer to any Albanese as “the Albanese”, with associated semitoric Albanese variety
Alb𝑥 (𝑋, 𝐷,𝛾)◦ ⊂ Alb𝑥 (𝑋, 𝐷,𝛾) and quasi-algebraic Albanese morphism alb𝑥 (𝑋, 𝐷,𝛾)◦.

Proposition 5.5 (Existence of the Albanese of a cover). In Setting 5.1, assume that 𝑋
is Kähler. Then, an Albanese of (𝑋, 𝐷,𝛾) exists. The image of alb𝑥 (𝑋, 𝐷,𝛾)◦ generates
Alb𝑥 (𝑋, 𝐷,𝛾)◦ as an Abelian group. Its dimension satisfies the inequality

dim Alb𝑥 (𝑋, 𝐷,𝛾)◦ ≤ 𝑞(𝑋, 𝐷,𝛾).

The proof of Proposition 5.5 requires some preparation. We give it in Section 6.2,

starting from Page 22 below. Assuming for the moment that the Albanese can be shown

to exist, the subsequent Section 5.3–5.4 gathers its most important properties.
Approval
Erwan —
Stefan —5.3. Functoriality in sequences of covers. The following immediate consequence of

the universal property will be used later.

Lemma 5.6 (Functoriality of the Albanese). Let (𝑋, 𝐷) be a C-pair where 𝑋 is compact
Kähler. Let

𝑋1 𝑋2 𝑋
𝛾1 𝛾2

be a sequence of covers. Consider the reduced divisors

𝐷2 :=
(
𝛾∗

2
⌊𝐷⌋

)
red

and 𝐷1 :=
(
(𝛾2 ◦ 𝛾1)∗⌊𝐷⌋

)
red

and write 𝑋 ◦
• := 𝑋• \ supp𝐷•. Finally, let 𝑥1 ∈ 𝑋 ◦

1
be any point and set 𝑥2 := 𝛾1 (𝑥1). Then,

there exists a unique surjection of complex Lie groups,

𝑐◦ : Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦ ↠ Alb𝑥2

(𝑋, 𝐷,𝛾2)◦,
that renders the following diagram commutative,

(5.6.1)

𝑋 ◦
1

Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦

𝑋 ◦
2

Alb𝑥2
(𝑋, 𝐷,𝛾2)◦

𝑋 ◦.

𝛾1 |𝑋 ◦
1

alb𝑥
1
(𝑋,𝐷,𝛾2◦𝛾1 )◦

∃!𝑐◦

alb𝑥
2
(𝑋,𝐷,𝛾2 )◦

𝛾2 |𝑋 ◦
2

The morphism 𝑐◦ is quasi-algebraic.

Proof. Uniqueness and surjectivity of 𝑐◦ (if it exists) follows from Proposition 5.5, which

asserts that the images of alb• (•)◦ generate Alb• (•)◦ as groups.

Existence of 𝑐◦ as a quasi-algebraic Lie group morphism follows from the universal

property of the Albanese. To be precise, recall from Property (5.2.2) that the composed

pull-back morphism

alb𝑥2
(𝑋, 𝐷,𝛾2)∗ : 𝐻 0

(
Ω1

Alb𝑥
2
(𝑋,𝐷,𝛾2 ) (logΔ)

)
→ 𝐻 0

(
𝑋2, Ω

[1]
𝑋2

(log𝐷1)
)

takes its image in 𝐻 0
(
𝑋2, Ω

[1]
(𝑋,𝐷,𝛾2 )

)
. As a consequence, we find that the composed pull-

back morphism(
alb𝑥2

(𝑋, 𝐷,𝛾2) ◦ 𝛾1

)∗
: 𝐻 0

(
Ω1

Alb𝑥
2
(𝑋,𝐷,𝛾2 ) (logΔ)

)
→ 𝐻 0

(
𝑋1, Ω

[1]
𝑋1

(log𝐷1)
)
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takes its image in

(5.6.2) 𝐻 0
(
𝑋1, 𝛾

[∗]
1

Ω [1]
(𝑋,𝐷,𝛾2 )

)
⊆ 𝐻 0

(
𝑋1, Ω

[1]
(𝑋,𝐷,𝛾2◦𝛾1 )

)
,

where the inclusion in (5.6.2) is [KR24a, Obs. 4.14]. As pointed out above, the universal

property of the Albanese Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦ now gives a unique quasi-algebraic group

morphism 𝑐◦ that makes Diagram (5.6.1) commute. □Approval
Erwan —
Stefan — 5.4. The Albanese of a Galois cover. Lemma 5.6 applies in particular in case where

𝑋1 = 𝑋2 are equal and where 𝛾1 is a Galois automorphism of the cover 𝛾2. We find that

the Galois group acts on the Albanese and that the Albanese morphism is equivariant.

Observation 5.7 (Galois action on the Albanese of a cover). In Setting 5.1, assume that

𝑋 is Kähler and that the cover 𝛾 is Galois with group 𝐺 . Recall from [KR24a, Obs. 4.19]

that Ω [1]
(𝑋,𝐷,𝛾 ) carries a natural𝐺-linearisation that is compatible with the natural Aut(𝑋 )-

linearisations of Ω [1]
𝑋

. In complete analogy to Fact 4.10, it follows from Lemma 5.6 that𝐺

acts on Alb𝑥 (𝑋, 𝐷,𝛾)◦ by quasi-algebraic automorphisms, in a way that makes the morph-

ism alb𝑥 (𝑋, 𝐷,𝛾)◦ equivariant. Corollary 3.14 on page 8 allows choosing a compactifica-

tion

Alb𝑥 (𝑋, 𝐷,𝛾)◦ ⊂ Alb𝑥 (𝑋, 𝐷,𝛾), written in short as 𝐴◦ ⊂ 𝐴,
such that the 𝐺-action on 𝐴◦

extends to 𝐴, and such that 𝐴◦ ⊂ 𝐴 is an Albanese for

(𝑋, 𝐷,𝛾). □

Construction 5.8 (Morphism to Galois quotient of the Albanese of a cover). In Observa-

tion 5.7, take quotients to find a diagram

(5.8.1)

𝑋 ◦ 𝐴◦

𝑋 ◦ 𝐴◦
/
𝐺

alb𝑥 (𝑋,𝐷,𝛾 )◦

𝛾 , quotient
𝛾𝐴 , quotient

𝑎◦

where 𝑎◦ is quasi-algebraic for the compactifications 𝑋 ◦ ⊂ 𝑋 and 𝐴◦/𝐺 ⊂ 𝐴/𝐺 . Propos-

itions 5.5 and 3.22 together guarantee that the image of alb𝑥 (𝑋, 𝐷,𝛾)◦ is not contained

in the ramification locus of the quotient morphism 𝛾𝐴 : 𝐴◦ → 𝐴◦/𝐺 . The image of 𝑎◦ is

therefore not contained in the branch locus.

Diagram (5.8.1) is a commutative diagram of holomorphic morphisms between normal

analytic varieties. We upgrade it to a commutative diagram of C-morphisms.

Observation 5.9 (C-Morphism to Galois quotient of the Albanese). The variety 𝐴◦
of

Observation 5.7 and Construction 5.8 is a semitorus and therefore smooth. The cri-

terion for C-morphisms spelled out in [KR24a, Prop. 8.6] therefore applies to show that

alb𝑥 (𝑋, 𝐷,𝛾)◦ induces a morphism of C-pairs
4
,

alb𝑥 (𝑋, 𝐷,𝛾)◦ : (𝑋 ◦, 0) → (𝐴◦, 0).
Taking the categorical quotients of C-pairs, [KR24a, Prop. 12.7] will thus yield a diagram

of C-morphisms between C-pairs as follows,

(5.9.1)

(𝑋 ◦, 0) (𝐴◦, 0)

(𝑋 ◦, 𝐷 ′) (𝑌 ◦, 𝐷𝑌 ),

alb𝑥 (𝑋,𝐷,𝛾 )

𝛾 , quotient 𝛾𝐴 , quotient

𝑎◦

4
In contrast, recall from [KR24a, Ex. 8.7 and 8.8] that a morphism between singular spaces 𝑍1 → 𝑍2 does

not always induce a C-morphism (𝑍1, 0) → (𝑍2, 0) .
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where

(𝑋 ◦, 𝐷 ′) := (𝑋 ◦, 0)
/
𝐺 and (𝑌 ◦, 𝐷𝑌 ) := (𝐴◦, 0)

/
𝐺.

Warning 5.10 (Boundary divisors in the quotient construction). The boundary divisor 𝐷 ′

in Observation 5.9 does not need equal 𝐷◦
. In fact, recall from [KR24a, Obs. 12.10] that

there is only an inequality 𝐷 ′ ≥ 𝐷◦
, which might be strict. As before, [KR24a, Prop. 10.4]

allows formulating this inequality by saying that the identity on 𝑋 ◦
induces a morphism

of C-pairs,

Id𝑋 ◦ : (𝑋 ◦, 𝐷 ′) → (𝑋 ◦, 𝐷◦).

The following proposition, which is central to everything that follows, claims that in

spite of Warning 5.10, the morphism 𝑎◦ of Diagram (5.9.1) does induce a morphism of

C-pairs,

𝑎◦ : (𝑋 ◦, 𝐷◦) → (𝑌 ◦, 𝐷𝑌 ).

This is expressed in technically correct and precise terms by saying that the quasi-

algebraic C-morphism 𝑎◦ of Diagram (5.9.1) factorizes via the C-morphism Id𝑋 ◦ that we

discussed in Warning 5.10.

Proposition 5.11. In the setting of Observation 5.7 and Warning 5.10, the quasi-algebraic
C-morphism 𝑎◦ of Diagram (5.9.1) factorizes via Id𝑋 ◦ : (𝑋 ◦, 𝐷 ′) → (𝑋 ◦, 𝐷◦). In other
words, we obtain a diagram of C-morphisms,

(𝑋 ◦, 0) (𝐴◦, 0)

(𝑋 ◦, 𝐷 ′) (𝑋 ◦, 𝐷◦) (𝑌 ◦, 𝐷𝑌 ),

alb𝑥 (𝑋,𝐷,𝛾 )◦

𝛾 , quotient 𝛾𝐴 , quotient

Id𝑋 ◦

𝑎◦

𝑎◦

where img𝑎◦ = img𝑎◦ is not contained in the branch locus of the quotient morphism 𝛾𝐴.

Proof. We aim apply the criterion for C-morphisms spelled out in [KR24a, Prop. 9.3] and

consider the sub-diagram

𝑋 ◦ 𝐴◦

𝑋 ◦ 𝑌 ◦.

alb𝑥 (𝑋,𝐷,𝛾 )◦

𝛾 , quotient 𝛾𝐴 , quotient

𝑎◦

Recall [KR24a, Obs. 12.11], which asserts that 𝛾𝐴 is strongly adapted for the C-pair

(𝑌 ◦, 𝐷𝑌 ), and that the C-cotangent sheaf is Ω [1]
(𝑌 ◦,𝐷𝑌 ,𝛾𝐴 ) = Ω1

𝐴◦ . Given that 𝐴◦
is a semi-

torus, we find that Ω [1]
(𝑌 ◦,𝐷𝑌 ,𝛾𝐴 ) is locally free. The criterion for C-morphisms, [KR24a,

Prop. 9.3] therefore applies to show that 𝑎◦ is a C-morphism as soon as we show that

there exists a sheaf morphism

d alb𝑥 (𝑋, 𝐷,𝛾)◦ :

(
alb𝑥 (𝑋, 𝐷,𝛾)◦

)∗
Ω [1]

(𝑌 ◦,𝐷𝑌 ,𝛾𝐴 ) → Ω [1]
(𝑋 ◦,𝐷◦,𝛾 )

that agrees with the standard pull-back of Kähler differentials wherever this makes sense.

That is however precisely the statement of Remark 5.3. □
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Approval
Erwan —
Stefan —5.5. Functoriality in sequences of Galois covers. The following lemma combines and

summarizes the results of Sections 5.3 and 5.4.

Lemma 5.12 (Functoriality of the Albanese). In the setting of Lemma 5.6, assume that the
covering morphisms𝛾2◦𝛾1 and𝛾2 are Galois, with groups𝐺2 and𝐺1 respectively. Then, there
exists a commutative diagram

𝑋 ◦
1

Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦

𝑋 ◦
2

Alb𝑥2
(𝑋, 𝐷,𝛾2)◦

𝑋 ◦ Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦

/
𝐺1

Alb𝑥2
(𝑋, 𝐷,𝛾2)◦

/
𝐺2

𝛾1 |𝑋 ◦
1

alb𝑥
1
(𝑋,𝐷,𝛾2◦𝛾1 )◦

𝑐◦ , quot. of Lie groups

quotient

alb𝑥
2
(𝑋,𝐷,𝛾2 )◦

𝛾2 |𝑋 ◦
2

quotient

alb
𝑥

1

(𝑋,𝐷,𝛾2◦𝛾1 )◦

alb
𝑥

2

(𝑋,𝐷,𝛾2 )◦

𝑐◦

where all morphisms are quasi-algebraic and all morphisms in the bottom row are morphisms
of C-pairs, between (𝑋 ◦, 𝐷◦) and the natural C-structures on the quotient pairs.

Proof. Except for the morphism 𝑐◦, the diagram is a combination of Lemma 5.6 and

Proposition 5.11 above. In order to construct 𝑐◦, observe that the group 𝐺2 is a quo-

tient of 𝑞 : 𝐺1 ↠ 𝐺2, and that 𝐺1 acts on 𝑋 ◦
2

via this quotient map, in a manner that

makes the morphism 𝛾1 |𝑋 ◦
1

equivariant. The universal property of the two Albanese maps

alb𝑥1
(𝑋,𝐷,𝛾2 ◦ 𝛾1)◦ and alb𝑥2

(𝑋,𝐷,𝛾2)◦ will then guarantee that 𝐺1 acts on the Albanese

varieties Alb𝑥1
(𝑋, 𝐷,𝛾2 ◦ 𝛾1)◦ and Alb𝑥2

(𝑋, 𝐷,𝛾2)◦ in a manner that makes the quotient

morphism 𝑐◦ equivariant. The map 𝑐◦ is then the induced C-morphism between the quo-

tients pairs, as given by the universal property of C-pair quotients, [KR24a, Def. 12.3 and

Thm. 12.5]. □

6. The Albanese for a subspace of differentials

Chapter Info
Rev.: # 730
Date: 13.05.2024
Time: 10:56
By: kebekus

Approval
Erwan —
Stefan —

This section proves the existence of an Albanese of a cover as a special case of the

“Albanese for a subspace of differentials”. We refer the reader to [Zuo99, Sect. 4.2] for

a related construction in the smooth, proper case. Throughout the present section, we

work in following setting.

Setting 6.1. Let (𝑋, 𝐷) be a log pair where 𝑋 is compact. Let 𝑥 ∈ 𝑋 ◦
be any point, and let

𝑉 ⊆ 𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)
be a linear subspace.

Definition 6.2 (The Albanese for a subspace of differentials). Assume Setting 6.1. An
Albanese of (𝑋, 𝐷,𝑉 ) is a semitoric variety Alb𝑥 (𝑋, 𝐷,𝑉 )◦ ⊂ Alb𝑥 (𝑋, 𝐷,𝑉 ) together with
a quasi-algebraic morphism

alb𝑥 (𝑋, 𝐷,𝑉 )◦ : 𝑋 ◦ → Alb𝑥 (𝑋, 𝐷,𝑉 )◦

such that the following holds.
(6.2.1) The morphism alb𝑥 (𝑋, 𝐷,𝑉 )◦ sends 𝑥 to 0 ∈ Alb𝑥 (𝑋, 𝐷,𝑉 )◦.
(6.2.2) The pull-back morphism of logarithmic differentials,

d alb𝑥 (𝑋, 𝐷,𝑉 ) : 𝐻 0

(
Ω1

Alb𝑥 (𝑋,𝐷,𝑉 ) (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
takes its image in 𝑉 .
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(6.2.3) If 𝐴◦ ⊂ 𝐴 is any semitoric variety and if 𝑎◦ : 𝑋 ◦ → 𝐴◦ is quasi-algebraic, sends 𝑥
to 0𝐴◦ and if

d𝑎 : 𝐻 0
(
𝐴, Ω1

𝐴 (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

)
takes its image in 𝑉 , then 𝑎◦ factors uniquely as

𝑋 ◦
Alb𝑥 (𝑋, 𝐷,𝑉 )◦ 𝐴◦,

alb𝑥 (𝑋,𝐷,𝑉 )◦

𝑎◦

∃!𝑏◦

where 𝑏◦ is a quasi-algebraic morphism of semitori.

Warning 6.3. We do not claim or ask in Item (6.2.2) that the space𝑉 is equal to the image

of the morphism d alb𝑥 (𝑋, 𝐷,𝑉 ). See Section 6.3 on page 23 for a sobering example which

shows that surjectivity is a delicate property of the subspace 𝑉 .

We will later consider Definition 6.2 in a setting where the space 𝑉 is of the form

𝑉 = 𝐻 0
(
𝑋, F

)
, for a subsheaf F ⊆ Ω1

𝑋
(log𝐷). The following notion will be used.

Definition 6.4 (The Albanese for subsheaves of differentials). Assume Setting 6.1. If there
exists a subsheaf F ⊆ Ω1

𝑋
(log𝐷) such that 𝑉 = 𝐻 0

(
𝑋, F

)
, then we denote the Albanese

briefly as alb𝑥 (𝑋, 𝐷,F )◦ : 𝑋 ◦ → Alb𝑥 (𝑋, 𝐷,F )◦. Approval
Erwan —
Stefan —6.1. Uniqueness and existence. As before, the universal property spelled out in

Item (6.2.3) implies that Alb𝑥 (𝑋, 𝐷,𝑉 )◦ is unique up to unique isomorphism and that

Alb𝑥 (𝑋, 𝐷,𝑉 ) is bimeromorphically unique. As before, we abuse notation and refer to any

Albanese as “the Albanese”, with associated semitoric Albanese variety Alb𝑥 (𝑋, 𝐷,𝑉 )◦ ⊂
Alb𝑥 (𝑋, 𝐷,𝑉 ) and quasi-algebraic Albanese morphism alb𝑥 (𝑋, 𝐷,𝑉 )◦.

Proposition 6.5. Assume Setting 6.1. If 𝑋 is Kähler, then an Albanese of (𝑋, 𝐷,𝑉 ) exists.
The image of alb𝑥 (𝑋, 𝐷,𝑉 )◦ generates Alb𝑥 (𝑋, 𝐷,𝑉 )◦ as an Abelian group. The dimension
is bounded by

(6.5.1) dim Alb𝑥 (𝑋, 𝐷,𝑉 )◦ ≤ dimC𝑉 .

Example 6.8 on page 23 shows that Inequality (6.5.1) might be strict. As in Section 4.2,

we give a direct construction of one Albanese.

Construction 6.6 (Construction of the Albanese for a subspace of differentials). In Set-

ting 6.1, consider the annihilator 𝑉⊥ ⊆ 𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)∗
and recall from Observa-

tion 4.13 that the construction of Alb𝑥 (𝑋, 𝐷)◦ equips us with a canonic holomorphic Lie

group morphism

(6.6.1) 𝐻 0
(
𝑋, Ω [1]

𝑋
(log𝐷)

)∗
↠ Alb𝑥 (𝑋, 𝐷)◦.

The image

𝐼𝑉 := img

(
𝑉⊥ → Alb𝑥 (𝑋, 𝐷)◦

)
is then a subgroup of Alb𝑥 (𝑋, 𝐷) that may or may not be closed. Either way, Fact 3.19 on

page 9 allows taking the smallest quasi-algebraic subgroup 𝐵 ⊆ Alb𝑥 (𝑋, 𝐷)◦ that contains

𝐼𝑉 . We write

Alb𝑥 (𝑋, 𝐷,𝑉 )◦ := Alb𝑥 (𝑋, 𝐷)◦
/
𝐵

and obtain morphisms

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ Alb𝑥 (𝑋, 𝐷,𝑉 )◦.

alb𝑥 (𝑋,𝐷 )◦

alb𝑥 (𝑋,𝐷,𝑉 )◦

𝑞◦ , quotient

Recall from Facts 3.16 and 3.20 that 𝐵 and Alb𝑥 (𝑋, 𝐷,𝑉 ) are semitori, and that there exists

a semitoric compactification Alb𝑥 (𝑋, 𝐷,𝑉 )◦ ⊆ Alb𝑥 (𝑋, 𝐷,𝑉 ) that renders the quotient

morphism𝑞◦ quasi-algebraic. With this choice of compactification, Lemma 2.4 guarantees

that the morphism alb𝑥 (𝑋, 𝐷,𝑉 )◦ is quasi-algebraic, as desired.
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Proof of Proposition 6.5. We need to verify that Construction 6.6 satisfies the properties

spelled out in Proposition 5.5. Once this is done, Proposition 4.9 on page 12 and surjectiv-

ity of the quotient morphism 𝑞 guarantees that the image of alb𝑥 (𝑋, 𝐷,𝑉 )◦ generates

Alb𝑥 (𝑋, 𝐷,𝑉 )◦ as an Abelian group, as claimed. Property (6.2.1) clearly holds by con-

struction.

Property (6.2.2). To prove Property (6.2.2), write𝑊 := img d alb𝑥 (𝑋, 𝐷,𝑉 ) and recall that

img

(
𝑉⊥ → Alb𝑥 (𝑋, 𝐷)◦

) constr.

⊆ ker(𝑞◦) Fact 4.17

= img

(
𝑊 ⊥ → Alb𝑥 (𝑋, 𝐷)◦

)
.

Given that the Lie group morphism (6.6.1) has maximal rank, we find that𝑉⊥ ⊆𝑊 ⊥
and

hence that 𝑉 ⊇𝑊 , as desired.

Property (6.2.3). Assume that a morphism 𝑎◦ : 𝑋 ◦ → 𝐴◦
as in Property (6.2.3) is given.

The universal property of Alb𝑥 (𝑋, 𝐷) will then yield a factorization

𝑋 ◦
Alb𝑥 (𝑋, 𝐷)◦ 𝐴◦.

alb𝑥 (𝑋,𝐷 )◦

𝑎◦

𝛽◦ , quasi-algebraic

We claim that the quasi-algebraic morphism 𝛽◦ factors via 𝑞◦,

Alb𝑥 (𝑋, 𝐷)◦ Alb𝑥 (𝑋, 𝐷)◦
/
𝐵 𝐴◦.

𝑞◦ , quasi-algebraic

𝛽◦ , quasi-algebraic

∃!𝑏◦

Equivalently, we claim that 𝐵 ⊆ ker(𝛽◦). This follows easily: writing

𝑊 := img

(
d𝑎 : 𝐻 0

(
𝐴, Ω1

𝐴 (logΔ)
)
→ 𝐻 0

(
𝑋, Ω [1]

𝑋
(log𝐷)

) )
,

we know by assumption that 𝑊 ⊆ 𝑉 or equivalently, that 𝑊 ⊥ ⊇ 𝑉⊥
. By Fact 4.17 on

page 15, this is in turn equivalent to ker(𝛽) ⊇ 𝐼𝑉 . The desired inclusion ker(𝛽◦) ⊇ 𝐵

follows as soon as we recall from Fact 3.21 on page 9 that ker(𝛽◦) is quasi-algebraic.

Lemma 2.4 on page 3 guarantees that 𝑏◦ is quasi-algebraic, as required. The statement

about the dimension is clear from the construction. □

6.2. Proof of Proposition 5.5. In the setting of Proposition 5.5, set

𝑉 := 𝐻 0
(
𝑋, Ω [1]

(𝑋,𝐷,𝛾 )
)
.

Using the notation introduced in Definition 6.4, Proposition 6.5 equips us with a semitoric

variety

Alb𝑥

(
𝑋, 𝐷,Ω [1]

(𝑋,𝐷,𝛾 )

)◦
⊂ Alb𝑥

(
𝑋, 𝐷,Ω [1]

(𝑋,𝐷,𝛾 )

)
and a quasi-algebraic morphism

alb𝑥

(
𝑋, 𝐷,Ω [1]

(𝑋,𝐷,𝛾 )

)◦
: 𝑋 ◦ → Alb𝑥

(
𝑋, 𝐷,Ω [1]

(𝑋,𝐷,𝛾 )

)◦
that we take as the Albanese of the cover 𝛾 of the C-pair (𝑋, 𝐷). A comparison of the

Properties (6.2.1)–(6.2.3) guaranteed by Proposition 6.5 with the Properties (5.2.1)–(5.2.3)

required by Proposition 5.5 concludes the proof. □
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Approval
Erwan —
Stefan — 6.3. Examples. We end the present section with two simple examples.

Example 6.7. In the setting of Definition 6.2, if 𝑉 = {0}, then Alb𝑥 (𝑋, 𝐷,𝑉 ) is a point.

Example 6.8. Let 𝐸 be an elliptic curve. Set 𝑋 = 𝐸 × 𝐸 and take 𝐷 := 0 ∈ Div(𝑋 ). Pulling

back differentials from the two factors gives natural morphisms

d𝜋𝑖 : 𝐻 0
(
𝐸, Ω1

𝐸

)
→ 𝐻 0

(
𝑋, Ω1

𝑋

)
.

Choose a number 𝜏 ∈ C and set𝑉 := img

(
(d𝜋1) + 𝜏 · (d𝜋2)

)
, which is a one-dimensional

linear subspace of 𝐻 0
(
𝑋, Ω1

𝑋

)
. The following will hold.

• If 𝜏 is non-rational, then 𝐼𝑉 is dense in Alb𝑥 (𝑋, 0)◦ and Alb𝑥 (𝑋, 0,𝑉 )◦ = {0}.
• Towards the other extreme, if 𝜏 = 0, then Alb𝑥 (𝑋, 0,𝑉 )◦ = Alb𝜋1 (𝑥 ) (𝐸).

7. Boundedness for special pairs Approval
Erwan —
Stefan —
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By: kebekus

Following Ueno’s work [Uen75], Campana has remarked in [Cam04, Sect. 5.2] that the

Albanese morphism of a special variety is always surjective. We extend Campana’s obser-

vation to the Albanese of a cover. For log canonical C-pairs that are special in the sense

of [KR24a, Def. 6.11], the following theorem implies that the dimension of the Albanese

is bounded by the dimension of 𝑋 , and cannot go to infinity as we consider higher and

higher covers. Along these lines, we view the theorem as a boundedness result.

Theorem 7.1 (The Albanese for covers for special pairs). In Setting 5.1, assume that 𝑋
is Kähler and (𝑋, 𝐷) is log canonical. If the C-pair (𝑋, 𝐷) is special, then the Albanese
morphism alb𝑥 (𝑋, 𝐷,𝛾)◦ is dominant.

The proof of Theorem 7.1 is given in Section 7.2, starting from Page 25 below.

Remark 7.2. Recall from Definition 5.2 that the Albanese morphism alb𝑥 (𝑋, 𝐷,𝛾)◦ is

quasi-algebraic, so that topological closure of its image,

img alb𝑥 (𝑋, 𝐷,𝛾)◦ ⊆ Alb𝑥 (𝑋, 𝐷,𝛾)◦,
is always analytic. The word “dominant” is therefore meaningful.

Remark 7.3. Assume Setting 5.1. If the C-pair (𝑋, 𝐷) is special, Theorem 7.1 implies in

particular that 𝑞+
Alb

(𝑋, 𝐷,𝛾) ≤ dim𝑋 .

Even for special pairs, one cannot expect that the Albanese morphism alb𝑥 (𝑋, 𝐷,𝛾)◦
is surjective. The following simple example shows what can go wrong.

Example 7.4 (Failure of surjectivity). Let𝑇 be a compact torus and let 𝑡 ∈ 𝑇 \ {0𝑇 } be any

point. Let 𝑋 be the blow-up of 𝑇 in 𝑡 , let 𝐷 ∈ Div(𝑋 ) be the exceptional divisor and let

𝑥 ∈ 𝑋 \ 𝐷 be the preimage of 0𝑇 . Then, Alb𝑥 (𝑋, 𝐷, Id𝑋 )◦ = 𝑇 and

img alb𝑥 (𝑋, 𝐷,𝛾)◦ = 𝑇 \ {𝑡}. Approval
Erwan —
Stefan —7.1. Failure of dominance. To prepare for the proof of Theorem 7.1, we analyse the

setting where the Albanese of a cover fails to be dominant. The construction presented

here will also be used in the forthcoming paper [KR24b], where we prove a C-version of

the Bloch-Ochiai theorem.

Setting 7.5 (Failure of dominance). In Setting 5.1, assume that 𝑋 is Kähler. Assume that

the cover𝛾 is Galois with group𝐺 , and use Corollary 3.14 on page 8 to choose an Albanese

Alb𝑥 (𝑋, 𝐷,𝛾)◦ ⊂ Alb𝑥 (𝑋, 𝐷,𝛾), written in short as Alb
◦ ⊂ Alb,

such that the 𝐺-action on Alb
◦

extends to Alb. Recall that the Albanese morphism alb
◦

is quasi-algebraic. The topological closure of the image, ℵ := img alb
◦
, is thus an analytic

subset of Alb. Set ℵ◦
:= ℵ ∩ Alb

◦
and assume that ℵ◦

is a proper subset, ℵ◦ ⊊ Alb
◦
.
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Remark 7.6 (Stabilizer groups). In Setting 7.5, recall from [NW14, Prop. 5.3.16] that the

stabilizer subgroup

St
Alb

◦ (ℵ◦) =
{
𝑎 ∈ Alb

◦ | 𝑎 + ℵ◦ = ℵ◦} ⊂ Alb
◦

is closed and quasi-algebraic. Recall from [NW14, Prop. 5.3.13] that its maximal connected

subgroup 𝐼 ⊂ St
Alb

◦ (ℵ◦) is then a semitorus.

Observation 7.7 (Properness of 𝐼 as a subgroup of Alb
◦
). By construction, we have

0
Alb

◦ = alb
◦ (𝑥) ∈ img alb

◦ ⊆ ℵ◦.

It follows that St
Alb

◦ (ℵ◦) ⊆ ℵ◦
. This equips us with inclusions

𝐼 ⊆ St
Alb

◦ (ℵ◦) ⊆ ℵ◦ ⊊ Alb
◦

and shows that 𝐼 ⊊ Alb
◦

is a proper subgroup. The quotient group Alb
◦/𝐼 is not trivial.

We have seen in Observation 5.7 on page 18 that the morphism alb
◦

is equivariant with

respect to the 𝐺-action on Alb
◦
. The action will then stabilize the subset ℵ◦

. As the next

lemma shows, it will also stabilize St
Alb

◦ (ℵ◦) and 𝐼 , at least up to translation.

Lemma 7.8 (Relation between𝐺 and 𝐼 ). In Setting 7.5, if 𝑔 ∈ 𝐺 is any element, then 𝑔 · 𝐼 is
a translate of 𝐼 . In particular, the𝐺-action of Alb

◦ maps 𝐼 -orbits to 𝐼 -orbits, for the additive
action of 𝐼 on Alb

◦.

Proof. Since all connected components of the group St
Alb

◦ (ℵ◦) are translates of the iden-

tity component, it suffices to show that 𝑔 · St
Alb

◦ (ℵ◦) it a translate of St
Alb

◦ (ℵ◦). To this

end, recall from Proposition 3.12 on page 7 that we may write 𝑔 : Alb
◦ → Alb

◦
in the

form 𝑔 : 𝑎 ↦→ 𝑓 ◦ (𝑎) +𝑔(0), where 𝑓 ◦ : 𝐺 → 𝐺 is a group morphism. In particular, we find

that

(7.8.1) ℵ◦ = 𝑔(ℵ◦) = 𝑓 ◦ (ℵ◦) + 𝑔(0) ⇔ 𝑓 ◦ (ℵ◦) = ℵ◦ − 𝑔(0).

This gives

𝑔
(
St

Alb
◦ (ℵ◦)

)
= 𝑓 ◦

(
St

Alb
◦ (ℵ◦)

)
+ 𝑔(0)

= St
Alb

◦
(
𝑓 ◦ (ℵ◦)

)
+ 𝑔(0) 𝑓 ◦ a group morphism

= St
Alb

◦
(
ℵ◦ − 𝑔(0)

)
+ 𝑔(0) (7.8.1)

= St
Alb

◦ (ℵ◦) + 𝑔(0) Defn. of St
Alb

◦ (•) □

Construction 7.9. Maintaining Setting 7.5, we construct a non-trivial semitoric variety

𝐵◦ ⊂ 𝐵 with 𝐺-action and a diagram

𝑋 ◦
Alb

◦ 𝐵◦

𝑋 ◦ Alb
◦/
𝐺 𝐵◦

/
𝐺

alb
◦

𝛾◦
, quotient by 𝐺

𝑏◦

𝛽◦ , quotient by 𝐼

𝛾
Alb

◦ , quotient by 𝐺 𝛾𝐵◦ , quotient by 𝐺

𝛿◦ 𝜀◦

where (among other things) the following holds.

• All horizontal arrows are quasi-algebraic,

• all arrows in the top row are 𝐺-equivariant, and

• all arrows in the bottom row are C-morphisms for the C-pairs

(𝑋 ◦, 𝐷◦),
(
Alb

◦, 0
) /
𝐺, and

(
𝐵◦, 0

) /
𝐺.
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The left rectangle of the diagram is given by Proposition 5.11 on page 19. As for the

right rectangle, take 𝐵◦ as the quotient Alb
◦/𝐼 . Recall from [NW14, Thm. 5.3.13] that 𝐵◦

is a semitorus, and that there exists a semitoric compactification 𝐵◦ ⊆ 𝐵 that renders

the quotient morphism 𝛽◦ quasi-algebraic. Lemma 7.8 gives a natural action 𝐺 ⟲ 𝐵◦

that makes the morphism 𝛽◦ equivariant, and Corollary 3.14 on page 8 allows assuming

without loss of generality that the 𝐺 action extends from 𝐵◦ to 𝐵. The right rectangle of

the diagram is now given by the universal property of 𝐺-quotients, [KR24a, Thm. 12.7].

Finish the construction by recalling from [KR24a, Prop. 12.7] that 𝜀◦ is a morphism of

C-pairs, from

(
Alb

◦, 0
)
/𝐺 to

(
𝐵◦, 0

)
/𝐺 , as required.

To conclude Construction 7.9, consider the topological closure 𝑍 := img 𝛽◦, which is

an analytic subset of 𝐵. As before, write 𝑍 ◦
:= 𝑍 ∩ 𝐵◦ and set 𝑝 := dim𝑍 .

The following observations summarize the main properties of the construction.

Observation 7.10. By construction, 𝑍 ◦
is not invariant under the action of any proper

semitorus in 𝐵◦. In this setting, recall from Kawamata’s proof of the Bloch conjecture,

[Kaw80], or more specifically from [Kob98, Cor. 3.8.27] that there exist𝐵◦-invariant differ-

entials 𝜏◦
0
, . . . , 𝜏◦𝑝 ∈ 𝐻 0

(
𝐵◦, Ω

𝑝

𝐵◦
)

such that the restrictions 𝜏◦• |𝑍 ◦
reg

are linearly independent

top-differentials on 𝑍 ◦
reg

, and therefore define a (𝑝 + 1)-dimensional linear subspace

𝑉 :=
〈
𝜏◦

0
|𝑍 ◦

reg
, . . . , 𝜏◦𝑝 |𝑍 ◦

reg

〉
⊆ 𝐻 0

(
𝑍 ◦

reg
,Ω

𝑝

𝑍 ◦
reg

)
= 𝐻 0

(
𝑍 ◦

reg
, 𝜔𝑍 ◦

reg

)
.

The associated meromorphic map 𝜑𝑉 : 𝑍 ◦
reg
d P𝑝 is generically finite. Recall

from Item (3.9.2) of Proposition 3.9 on page 6 that the 𝐵◦-invariant differentials 𝜏◦• ∈
𝐻 0

(
𝐵◦, Ω

𝑝

𝐵◦
)

automatically extend to differentials with logarithmic poles at infinity, say

𝜏• ∈ 𝐻 0
(
𝐵, Ω

𝑝

𝐵
(logΔ)

)
.

Observation 7.11. We have observed in 7.7 that 𝐼 ⊆ ℵ◦
. There is more that we can say.

The assumption ℵ◦ ⊊ Alb
◦

and Item (5.2.3) of Definition 5.2 imply that ℵ◦
is not itself a

semitorus. In particular, we find that 𝐼 ⊊ ℵ◦
is a proper subset and that the variety 𝑍 ◦

is

therefore positive-dimensional. The inclusion 𝐼 ⊂ ℵ◦
also implies that the morphisms

𝛽◦ : Alb
◦ ↠ 𝐵◦ and 𝛽◦ |ℵ◦ : ℵ◦ → 𝑍 ◦

are𝐺-equivariant fibre bundles, both with typical fibre 𝐼 . The analytic variety 𝑍 ◦
is there-

fore a proper subset, 𝑍 ◦ ⊊ 𝐵◦. Approval
Erwan —
Stefan —7.2. Proof of Theorem 7.1. We prove Theorem 7.1 in the remainder of the present Sec-

tion 7 and maintain Setting 5.1 throughout. For simplicity of notation, we prove the

contrapositive: assuming that the adapted Albanese morphism alb𝑥 (𝑋, 𝐷,𝛾)◦ is not dom-

inant, we show that the C-pair (𝑋, 𝐷) admits a Bogomolov sheaf and is hence not special.

The proof follows classic arguments, with some additional complications because of

our use of adapted differentials and because of the singularities of the varieties involved.
Approval
Erwan —
Stefan —Step 1: Simplification. Recall Lemma 5.6: Non-dominance of alb𝑥 (𝑋, 𝐷,𝛾)◦ is pre-

served when we replace 𝛾 by any cover that factors via 𝛾 . We can therefore pass to the

Galois closure and assume that we are in Setting 7.5. We use the notation introduced in

Construction 7.9 and Observations 7.10–7.11 in the remainder of the proof.
Approval
Erwan —
Stefan —Step 2: A rank-one sheaf in Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) over 𝑋 ◦. Consider the composed morphism of

𝐺-sheaves

(7.12.1) (𝑏◦)∗ Ω𝑝

𝐵◦ Ω
𝑝

𝑋 ◦ Ω
[𝑝 ]
𝑋 ◦ ,

d𝑏◦

and let L ◦ ⊆ Ω
[𝑝 ]
𝑋 ◦ denote the image sheaf, which is then a locally free 𝐺-subsheaf of

Ω
[𝑝 ]
𝑋

. We summarize its main properties.
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Observation 7.13. The sheaf L ◦
is of rank one because 𝑏◦ factors via the 𝑝-dimensional

space 𝑍 ◦
. □ (Observation 7.13)

Claim 7.14. The sheaf L ◦
is contained in the subsheaf Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

��
𝑋 ◦ ⊆ Ω

[𝑝 ]
𝑋 ◦ .

Proof of Claim 7.14. The morphism 𝑏◦ factors via alb
◦
. Since pull-back of Kähler differen-

tials is functorial, d𝑏◦ factors via d alb
◦

and the image of the composed morphism (7.12.1)

is contained in the image of the composition

(alb
◦)∗ Ω𝑝

Alb
◦ Ω

𝑝

𝑋 ◦ Ω
[𝑝 ]
𝑋 ◦ .

d alb
◦

But then Remark 5.3 gives the claim. □ (Claim 7.14)
Approval
Erwan —
Stefan — Step 3: A rank-one sheaf in Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) . We extend the sheaf L ◦

from 𝑋 ◦
to a rank-

one, reflexive sheaf that is defined on all of 𝑋 . As in Section 4, the reader coming from

algebraic geometry might find the proof surprisingly complicated: In the analytic setting,

it is typically not possible to extend coherent sheaves across codimension-two subsets.

Claim 7.15. There exists a rank-one, reflexive𝐺-subsheaf L ⊆ Ω
[𝑝 ]
(𝑋,𝐷,𝛾 ) whose restriction

to 𝑋 ◦
contains L ◦

. There are sections 𝜎0, . . . , 𝜎𝑝 ∈ 𝐻 0
(
𝑋, L

)
whose associated linear

system defines a dominant meromorphic map 𝑋 d P𝑝 .

Proof of Claim 7.15. The morphism 𝑏◦ : 𝑋 ◦ → 𝐵◦ is quasi-algebraic and therefore extends

to a 𝐺-equivariant meromorphic map 𝑏 : 𝑋 d 𝐵. Choose a 𝐺-equivariant log-resolution

(𝑋, 𝐷) of (𝑋, 𝐷) and the meromorphic map 𝑏 as follows:

𝑋

𝑋 𝐵.

𝜌 , resolution

𝑏

𝑏

We can then consider 𝐺-subsheaves

img

(
d𝑏 : Ω

𝑝

𝐵
(logΔ) → Ω

𝑝

𝑋
(log𝐷)

)
⊆ Ω

𝑝

𝑋
(log𝐷)

and

L ′
:= 𝜌∗ img

(
d𝑏

)
⊆ 𝜌∗Ω

𝑝

𝑋
(log𝐷) ⊆ Ω

[𝑝 ]
𝑋

(log𝐷)

The construction guarantees that the sheaves L ′
and L ◦

agree over the open set 𝑋 ◦
;

in particular, we find that L ′
is of rank one. Together with Claim 7.14, the construction

shows that L ′
is contained in Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) . Finally, let L be the saturation of L ′

in Ω
[𝑝 ]
(𝑋,𝐷,𝛾 ) .

The sheaf L is then automatically reflexive. In summary, we obtain inclusions of 𝐺-

sheaves as follows,

L ′ ⊆ L ⊆ Ω
[𝑝 ]
(𝑋,𝐷,𝛾 ) ⊆ Ω

[𝑝 ]
𝑋

(log𝐷).
In order to construct the sections 𝜎•, recall from Observation 7.10 that the differentials

𝜏• have logarithmic poles at infinity, and then so do their pull-backs. To be more precise,

consider the reflexive differentials

𝜎• ∈ 𝐻 0
(
𝑋, Ω

[𝑝 ]
𝑋

(log𝐷)
)

that generically agree with the pull-back of 𝜏•, and therefore restrict to sections

𝜎• |𝑋 ◦ ∈ 𝐻 0
(
𝑋 ◦, L ◦) ⊂ 𝐻 0

(
𝑋 ◦, Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

)
.

But that already implies that the 𝜎• are sections of L . □ (Claim 7.15)
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Approval
Erwan —
Stefan — Step 4: A Bogomolov sheaf for (𝑋, 𝐷). Given any number 𝑖 ∈ N, recall from [KR24a,

Obs. 4.12] that reflexive symmetric multiplication of adapted reflexive tensors yields in-

clusions

L [⊗𝑖 ] ⊆ Sym
[𝑖 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 ) .

We consider the 𝐺-invariant push-forward sheaves,

L𝑖 :=

(
𝛾∗L

[⊗𝑖 ]
)𝐺

⊆
(
𝛾∗ Sym

[𝑖 ]
C Ω

[𝑝 ]
(𝑋,𝐷,𝛾 )

)𝐺
[KR24a, Cor. 4.20]

= Sym
[𝑖 ]
C Ω

[𝑝 ]
(𝑋,𝐷,Id𝑋 ) .

Recall from [GKKP11, Lem. A.4] that the sheaves L𝑖 are reflexive. By construction, their

rank is one. We will show in this step that L1 is a Bogomolov sheaf for (𝑋, 𝐷).

Observation 7.16. If 𝑖 ∈ N is any number, then L𝑖 equals the 𝑖th C-product sheaf

L𝑖 = Sym
[𝑖 ]
C L1,

as introduced in [KR24a, Def. 6.5] □

Recalling the definition of the C-Kodaira-Iitaka dimension from [KR24a, Sect. 6.2],

it remains to find one sheaf L𝑖 with non-empty linear system whose associated mero-

morphic map has an image of dimension ≥ 𝑝 . For this, consider the linear systems

𝑊𝑖 := 𝐻 0

(
𝑋,L [⊗𝑖 ]

)𝐺
⊆ 𝐻 0

(
𝑋,L [⊗𝑖 ]

)
.

If 𝑖 is sufficiently large and divisible, then𝑊𝑖 is positive-dimensional and the associated

meromorphic map 𝜑𝑊 : 𝑋 d P• has an image of dimension

dim img𝜑𝑊 ≥ dim img(𝜑𝑉 ◦ 𝑏◦) ≥ 𝑝.

By construction, the meromorphic map𝜑𝑊 is constant on𝐺-orbits and the induced mero-

morphic map𝜑 : 𝑋 d P• equals the meromorphic map associated with the reflexive sheaf

L𝑖 . We have seen above that this finishes the proof of Theorem 7.1. □

Part III. Applications

8. C-semitoric varieties
Chapter Info
Rev.: # 743
Date: 21.05.2024
Time: 16:53
By: kebekus

Approval
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We argue that quotients of semitoric varieties should be seen as C-analogoues of the

tori and semitoric varieties that appear in the classic Albanese construction. Before stat-

ing our main result on the existence of an Albanese for a C-pair, we define and discuss

the relevant notion precisely.

Definition 8.1 (C-semitoric varieties). A C-semitoric variety is a C-pair (𝑋, 𝐷) and a
point 𝑥 ∈ 𝑋 ◦, such that there exists a semitoric variety 𝐴◦ ⊂ 𝐴 and a C-isomorphism of the
form

(8.1.1) (𝑋, 𝐷) �
(
𝐴,Δ𝐴

) /
finite group

that identifies 𝑥 with the image of the neutral element 0 ∈ 𝐴◦. An isomorphism as in (8.1.1)

is called a presentation of the C-semitoric variety.

The choice of a presentation is not part of the data that defines a C-semitoric variety.

Remark 8.2. Given a C-semitoric variety (𝑋, 𝐷), 𝑥 ∈ 𝑋 ◦
, then (𝑋, 𝐷) is locally uniform-

izable, [KR24a, Def. 2.29] and 𝑋 is compact Kähler, cf. [NW14, Prop. 5.3.5].

Example 8.3. The pointed C-pair(
P1, 1

2
· {0} + 1

2
· {1} + 1

2
· {2} + 1

2
· {∞}

)
, 𝑥 = 1

is a C-semitoric variety.
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It is perhaps not obvious from the outset that “C-semitoric variety” is a meaningful

notion. In particular, it is probably not clear that morphisms of C-semitoric variety have

anything to do with the groups that define the semitoric structures of domain and target.

Here, we would like to make the point that quasi-algebraic C-morphisms of C-semitoric

varieties do indeed come from group morphisms, and therefore respect the structure in

a meaningful way. We see this as a strong indication that C-semitoric varieties are the

correct objects to consider.

Theorem 8.4 (Morphisms between C-semitoric varieties). Let (𝑋1, 𝐷𝑋1
), 𝑥1 ∈ 𝑋 ◦

1
and

(𝑋2, 𝐷𝑋2
), 𝑥2 ∈ 𝑋 ◦

2
be two C-semitoric varieties with presentations

(𝑋1, 𝐷𝑋1
) �

(
𝐴1,Δ𝐴1

) /
𝐺1

and (𝑋2, 𝐷𝑋2
) �

(
𝐴2,Δ𝐴2

) /
𝐺2 .

Given any quasi-algebraic C-morphism 𝜑◦
: (𝑋 ◦

1
, 𝐷◦

𝑋1

) → (𝑋 ◦
2
, 𝐷◦

𝑋2

) that sends 𝑥1 to 𝑥2,
there exists a semitoric variety 𝐵◦ ⊂ 𝐵 and a commutative diagram of the following form,

(8.4.1)

𝐵◦ 𝐴◦
1

𝑋 ◦
1

𝐴◦
2

𝐴◦
2

𝑋 ◦
2
.

𝜓 ◦ , quasi-algebraic

isogeny
Φ◦ , quasi-algebraic

group morphism

𝑞◦
1
, quotient

𝜑◦

𝑞◦
2
, quotient

As an immediate corollary, we note that quasi-algebraic morphisms of C-semitoric

varieties enjoy many of the special properties known for Lie group morphisms.

Corollary 8.5 (Description of morphisms between C-semitoric varieties). The following
holds in the setting of Theorem 8.4.

(8.5.1) The fibres of 𝜑◦ are of pure dimension.
(8.5.2) Any two non-empty fibres of 𝜑◦ are of the same dimension.
(8.5.3) If 𝜑◦ is quasi-finite, then it is finite. □

Approval
Erwan —
Stefan — 8.1. Proof of Theorem 8.4. We maintain notation and assumptions of Theorem 8.4 in

the present section. To begin, choose a component

𝐶◦ ⊆ normalisation of 𝐴◦
1
×𝑋 ◦

2

𝐴◦
2

that contains a point 𝑐 ∈ 𝐶◦
that maps to 0𝐴◦

1

and 0𝐴◦
2

, respectively. Fix one choice of 𝑐 for

the remainder of the proof.

The natural morphism 𝛽◦ : 𝐶◦ ↠ 𝐴◦
1

is finite. By the analytic version of “Zariski’s main

theorem in the form of Grothendieck”, [DG94, Thm. 3.4], there exists a unique normal

compactification𝐶◦ ⊂ 𝐶 where 𝛽◦ extends to finite morphism 𝛽 : 𝐶 → 𝐴1. An elementary

computation shows that the natural morphism 𝜂◦ : 𝐶◦ → 𝐴◦
2

is quasi-algebraic for this

compactification, so that we obtain the following diagram,

(8.6.1)

𝐶 𝐶◦ 𝐴◦
2

𝐴2

𝐴1 𝐴◦
1

𝐴◦
2

𝐴2

𝑋1 𝑋 ◦
1

𝑋 ◦
2

𝑋2.

𝛽 , finite

𝜂

𝜂◦

𝛽◦ , finite

quotient 𝑞◦
1
, quotient 𝑞◦

2
, quotient quotient

𝜑

𝜑◦
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Approval
Erwan —
Stefan — Step 1: Analysis of 𝛽 . The morphism 𝛽 is an adapted cover for the logarithmic C-pair

(𝐴1,Δ𝐴1
). Recall from [KR24a, Obs. 3.16] that the associated C-cotangent sheaves equals

(8.6.2) Ω [1]
(𝐴1,Δ𝐴

1
,𝛽 ) = 𝛽

∗Ω1

𝐴1

(
logΔ𝐴1

)
.

In particular, we find that the composed pull-back morphism

d 𝛽 : 𝐻 0
(
𝐴1, Ω

1

𝐴1

(logΔ𝐴1
)
)
→ 𝐻 0

(
𝐶, Ω [1]

𝐶
(logΔ𝐶 )

)
takes its image in 𝐻 0

(
𝐶, Ω [1]

(𝐴1,Δ𝐴
1
,𝛽 )

)
. The universal property of the adapted Albanese for

the adapted cover 𝛽 , as specified in Item (5.2.3) of Definition 5.2, will therefore apply to

give a factorization

𝐶◦
Alb𝑐 (𝐴1,Δ𝐴1

, 𝛽)◦ 𝐴◦
1
,

𝛽◦

alb𝑐 (𝐴1,Δ𝐴
1
,𝛽 )◦ 𝜓 ◦

where the morphisms 𝛽◦ and alb𝑐 (. . .) are quasi-algebraic. By Lemma 2.4, then so is

the morphism 𝜓 ◦
. The morphism 𝜓 ◦

sends 0Alb𝑐 (𝐴1,Δ𝐴
1
,𝛽 ) to 0𝐴◦

1

, and is hence a group

morphism by Proposition 3.12. We claim that the surjection 𝜓 ◦
is also finite, hence an

isogeny. Equivalently: we claim that Alb𝑐 (𝐴1,Δ𝐴1
, 𝛽)◦ ≤ dim𝐴◦

1
. But

dim Alb𝑐 (𝐴1,Δ𝐴1
, 𝛽)◦ ≤ ℎ0

(
𝐶, Ω [1]

(𝐴1,Δ𝐴
1
,𝛽 )

)
Proposition 5.5

= ℎ0
(
𝐶, 𝛽∗Ω1

𝐴1

(logΔ𝐴1
)
)

(8.6.2)

= ℎ0
(
𝐶, O

⊕ dim𝐴◦
1

𝐶

)
= dim𝐴◦

1
Proposition 3.9.

Approval
Erwan —
Stefan —Step 2: Analysis of 𝜂. Recall [KR24a, Obs. 12.11], which implies that the morphisms 𝑞◦•

of Diagram (8.6.1) are adapted for (𝑋 ◦
• , 𝐷

◦
•) and that the C-cotangent sheaves equal

(8.6.3) Ω [1]
(𝑋 ◦

• ,𝐷
◦
•,𝑞

◦
• )
= Ω1

𝐴◦
•
.

Along similar lines, [KR24a, Obs. 4.15] implies that the morphism 𝑞◦
1
◦ 𝛽◦ is adapted for

the pair (𝑋 ◦
1
, 𝐷◦

1
), and that

(8.6.4) Ω [1]
(𝑋 ◦

1
,𝐷◦

1
,𝑞◦

1
◦𝛽◦ ) = (𝛽◦) [∗]Ω [1]

(𝑋 ◦
1
,𝐷◦

1
,𝑞◦

1
)

(8.6.3)

= (𝛽◦)∗Ω1

𝐴◦
1

,

The assumption that 𝜑◦
is a C-morphism implies 𝜂◦ admits pull-back of adapted reflexive

differentials,

𝑑𝜂◦ : (𝜂◦)∗Ω [1]
(𝑋 ◦

2
,𝐷◦

2
,𝑞◦

2
) → Ω [1]

(𝑋 ◦
1
,𝐷◦

1
,𝑞◦

1
◦𝛽◦ ) ,

where

Ω [1]
(𝑋 ◦

2
,𝐷◦

2
,𝑞◦

2
)

(8.6.3)

= Ω1

𝐴◦
2

and Ω [1]
(𝑋 ◦

1
,𝐷◦

1
,𝑞◦

1
◦𝛽◦ )

(8.6.4)

= (𝛽◦)∗Ω1

𝐴◦
1

.

In particular, we find that the composed pull-back morphism

d𝜂 : 𝐻 0
(
𝐴2, Ω

1

𝐴2

(logΔ𝐴2
)
)
→ 𝐻 0

(
𝐶, Ω [1]

𝐶
(logΔ𝐶 )

)
takes its image in

𝐻 0
(
𝐶, Ω [1]

𝐶
(logΔ𝐶 )

)
= 𝐻 0

(
𝐶, Ω [1]

(𝐴1,Δ𝐴
1
,𝛽 )

)
.

As above, the universal property of the adapted Albanese will therefore apply to give a

factorization

𝐶◦
Alb𝑐 (𝐴1,Δ𝐴1

, 𝛽)◦ 𝐴◦
2
,

𝜂◦

alb𝑐 (𝐴1,Δ𝐴
1
,𝛽 )◦ Φ◦

where Φ◦
is quasi-algebraic and hence, by Proposition 3.12, a group morphism.
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Approval
Erwan —
Stefan —Step 3: Summary. We have seen in Steps 1 and 2 that 𝛽◦ and 𝜂◦ both factor via

alb𝑐 (𝐴1,Δ𝐴1
, 𝛽)◦. The following diagram summarizes the situation,

𝐶◦
Alb𝑐 (𝐴1,Δ𝐴1

, 𝛽)◦ 𝐴◦
1

𝑋 ◦
1

𝐴◦
2

𝐴◦
2

𝑋 ◦
2
.

alb𝑐 (𝐴1,Δ𝐴
1
,𝛽 )◦ 𝜓 ◦

, isogeny

Φ◦
, group morphism

𝑞◦
1
, quotient

𝜑◦

𝑞◦
2
, quotient

The proof of Theorem 8.4 is then finished once we set 𝐵◦ := Alb𝑐 (𝐴1,Δ𝐴1
, 𝛽)◦. □

9. The Albanese of a C-pair with bounded irregularity

Chapter Info
Rev.: # 743
Date: 21.05.2024
Time: 16:53
By: kebekus
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The Albanese of a projective manifold is characterized by universal properties that

can be formulated in a number of ways. Our presentation follows Serre’s classic paper

[Ser59]
5

, where the Albanese of a projective manifold 𝑋 is an Abelian variety Alb(𝑋 )
together with a morphism alb : 𝑋 → Alb(𝑋 ) such that any other morphism from 𝑋 to an

Abelian variety factors via alb. For C-pairs with adapted augmented Albanese irregularity

𝑞+
Alb

< ∞, we show that a similar notion exists when we replace Abelian varieties by

quotients of tori (or more generally by C-semitoric varieties). For C-pairs with 𝑞+
Alb

= ∞,

we argue in Section 9.2 that a meaningful Albanese cannot possibly exist.

Approval
Erwan —
Stefan — 9.1. Existence of the Albanese in case of bounded irregularity. With all the neces-

sary preparation at hand, the main result on the existence of an Albanese of a C-pair is

now formulated as follows.

Definition 9.1 (The Albanese of a C-pair). Let (𝑋, 𝐷) be a C-pair where 𝑋 is a com-
pact. Let 𝑥 ∈ 𝑋 ◦ be any point. An Albanese of (𝑋, 𝐷) is a C-semitoric variety(
Alb𝑥 (𝑋, 𝐷),ΔAlb𝑥 (𝑋,𝐷 )

)
with distinguished point 𝑎 ∈ Alb𝑥 (𝑋, 𝐷)◦ and a quasi-algebraic

C-morphism

alb𝑥 (𝑋, 𝐷)◦ : (𝑋 ◦, 𝐷◦) →
(
Alb

◦
𝑥 (𝑋, 𝐷),Δ◦

Alb𝑥 (𝑋,𝐷 )
)

such that the following holds.

(9.1.1) The morphism alb𝑥 (𝑋, 𝐷)◦ sends 𝑥 to 𝑎.
(9.1.2) If (𝑆,Δ𝑆 ), 𝑠 ∈ 𝑆◦ is any other C-semitoric variety and if 𝑠◦ : (𝑋 ◦, 𝐷◦) → (𝑆◦,Δ◦

𝑆
)

is any quasi-algebraic C-morphism that sends 𝑥 to 𝑠 , then 𝑠◦ factors uniquely as

(𝑋 ◦, 𝐷◦)
(
Alb

◦
𝑥 (𝑋, 𝐷),Δ◦

Alb𝑥 (𝑋,𝐷 )
)

(𝑆◦,Δ◦
𝑆
).

alb𝑥 (𝑋,𝐷 )◦

𝑠◦

∃!𝑐◦ , quasi-algebraic

Theorem 9.2 (The Albanese of a C-pair). Let (𝑋, 𝐷) be a locally uniformizable C-pair
where 𝑋 is compact Kähler. If 𝑞+

Alb
(𝑋, 𝐷) < ∞, then an Albanese of (𝑋, 𝐷) exists.

Theorem 9.2 will be shown in Section 9.3 below.

Remark 9.3 (Special pairs). Recall from Remark 7.3 on page 23 that the assumption

𝑞+
Alb

(𝑋, 𝐷) < ∞ is always satisfied if the C-pair (𝑋, 𝐷) is special.

Remark 9.4 (Uniqueness). The universal property implies that Alb𝑥 (𝑋, 𝐷)◦ is unique up

to unique isomorphism and that Alb𝑥 (𝑋, 𝐷) is bimeromorphically unique. The universal

property also implies that dim Alb𝑥 (𝑋, 𝐷) = 𝑞+
Alb

(𝑋, 𝐷).

As before, we abuse notation and refer to any C-Albanese as “the C-Albanese”.
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Approval
Erwan —
Stefan — 9.2. Non-existence of the Albanese in case of unbounded irregularity. Before

proving of Theorem 9.2, we remark that the assumption 𝑞+
Alb

(𝑋, 𝐷) < ∞ is necessary

in the strongest possible sense.

Proposition 9.5 (Non-existence of the Albanese in case of unbounded irregularity). Let
(𝑋, 𝐷) be a locally uniformizable C-pair where 𝑋 is a compact Kähler. If 𝑞+

Alb
(𝑋, 𝐷) = ∞,

then an Albanese of (𝑋, 𝐷) cannot possibly exist.

Proof. We argue by contradiction and assume that there exists a point 𝑥 ∈ 𝑋 ◦
, a C-

semitoric variety

(
𝐴,Δ𝐴

)
, 𝑎 ∈ 𝐴 and a quasi-algebraic C-morphism

𝑎◦ : (𝑋 ◦, 𝐷◦) →
(
𝐴◦,Δ◦

𝐴)
that satisfies the universal property of Theorem 9.2. By assumption, there exists a cover

𝛾 : 𝑋 ↠ 𝑋 such that 𝑞Alb (𝑋, 𝐷,𝛾) > dim𝐴◦
. Lemma 5.6 on page 17 allows assuming

without loss of generality that 𝛾 is Galois with group 𝐺 . Choosing any point 𝑥 ∈ 𝛾−1 (𝑥),
Proposition 5.11 on page 19 yields a diagram

(9.5.1)

𝑋 ◦
Alb

◦
𝑥
(𝑋, 𝐷,𝛾)

𝑋 ◦ Alb
◦
𝑥
(𝑋, 𝐷,𝛾)

/
𝐺

alb
◦
𝑥
(𝑋,𝐷,𝛾 )

𝛾 quotient

𝑠◦

where 𝑠◦ is a quasi-algebraic morphism of C-pairs,

𝑠◦ : (𝑋 ◦, 𝐷◦) →
(
Alb

◦
𝑥
(𝑋, 𝐷,𝛾), 0

) /
𝐺.

By assumption, the C-morphism 𝑠◦ factors via 𝑎◦, and equips us with a quasi-algebraic

morphism of C-pairs,

𝑐◦ : (𝐴◦,Δ◦
𝐴) →

(
Alb

◦
𝑥
(𝑋, 𝐷,𝛾), 0

) /
𝐺.

Observing that domains and target of the C-morphism 𝑐◦ are C-semitoric varieties, Theo-

rem 8.4 yields a semitoric variety ( q𝐴,Δ
q𝐴
) and an extension of Diagram (9.5.1) as follows,

q𝑋 ◦
q𝐴◦

Alb
◦
𝑥
(𝑋, 𝐷,𝛾)

𝑋 ◦
Alb

◦
𝑥
(𝑋, 𝐷,𝛾)

𝑋 ◦ 𝐴◦ Alb
◦
𝑥
(𝑋, 𝐷,𝛾)

/
𝐺

finite

Φ◦
, group morphism

isogeny

alb
◦
𝑥
(𝑋,𝐷,𝛾 )

𝛾 quotient

𝑎◦

𝑠◦

𝑐◦

where Φ◦
is a quasi-algebraic group morphism. Since

dim q𝐴◦ = dim𝐴◦ < dim Alb𝑥 (𝑋, 𝐷,𝛾)
by construction, it is clear that Φ◦

cannot be surjective. It follows that the image of

the Albanese morphism alb
◦
𝑥
(𝑋, 𝐷,𝛾) is contained in the proper subgroup imgΦ◦ ⊊

Alb
◦
𝑥
(𝑋, 𝐷,𝛾), contradicting the assertion of Proposition 6.5 that the image generates

Alb𝑥 (𝑋, 𝐷,𝛾)◦ as an Abelian group. □

5
See also the presentation in [Wit08, Appendix A].
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Approval
Erwan —
Stefan —

9.3. Proof of Theorem 9.2. We maintain notation and assumptions of Theorem 9.2. The

proof is somewhat long, as it involves the discussion of a fair number of diagrams and

references to almost all results obtained so far. For the reader’s convenience, we present

the argument in four relatively independent steps.

Approval
Erwan —
Stefan — Step 1: Choices and constructions. We consider the set of Galois covers,

𝑀 :=
{
𝛿 : 𝑋𝛿 ↠ 𝑋 a Galois cover of (𝑋, 𝐷)

}
For every 𝛿 ∈ 𝑀 , write𝐺𝛿 for the associated Galois group, write 𝑋 ◦

𝛿
:= 𝛿−1 (𝑋 ◦) ⊆ 𝑋𝛿 and

denote the restriction of 𝛿 by 𝛿◦ : 𝑋 ◦
𝛿
→ 𝑋 ◦

.

Choice 9.6 (Preimages of 𝑥 ). Choose a compatible system of preimage points 𝑥𝛿 ∈ 𝛿−1 (𝑥)
where “compatible” means that whenever there are two covers 𝛿1, 𝛿2 ∈ 𝑀 where 𝛿1 factors

via 𝛿2,

𝑋𝛿1
𝑋𝛿2

𝑋,
𝛿12

𝛿1

𝛿2

then 𝛿12 (𝑥𝛿1
) = 𝑥𝛿2

.

Choice 9.7 (Albanese varieties for the covers). For every 𝛿 ∈ 𝑀 , use Proposition 5.5 and

Corollary 3.14 to choose an Albanese

(
𝐴𝛿 ,Δ𝐴𝛿

)
of the cover 𝛿 , where the 𝐺𝛿 -action ex-

tends from 𝐴◦
𝛿

to 𝐴𝛿 . Denote the associated quasi-algebraic morphism by

𝑎◦
𝛿

: 𝑋 ◦
𝛿
→ 𝐴◦

𝛿

and recall that 𝑎◦
𝛿

maps the distinguished preimage point 𝑥𝛿 to 0𝐴◦
𝛿
∈ 𝐴◦

𝛿
.

Notation 9.8 (C-semitoric quotients). With the choices above, consider the C-semitoric

varieties

(𝐵𝛿 ,Δ𝐵𝛿
) := (𝐴𝛿 ,Δ𝐴𝛿

)
/
𝐺𝛿

with distinguished points 𝑏𝛿 = [0𝐴◦
𝛿
] ∈ 𝐵◦

𝛿
.

Let 𝑎◦
𝛿

: (𝑋 ◦, 𝐷◦) → (𝐵◦
𝛿
,Δ◦

𝐵𝛿
) be the quasi-algebraic C-morphisms introduced in Propos-

ition 5.11. They send 𝑥 ∈ 𝑋 ◦
to the distinguished points 𝑏𝛿 ∈ 𝐵◦

𝛿
.

In the sequel, we will need to compare the C-semitoric varieties induced by two covers

that factor one another. The reminder summarizes what we already know.

Reminder 9.9 (Comparing covers). Given two covers 𝛿1, 𝛿2 ∈ 𝑀 where 𝛿1 factors via 𝛿2,

Lemma 5.12 equips us with a commutative diagram

(9.9.1)

𝑋 ◦
𝛿1

𝐴◦
𝛿1

𝑋 ◦
𝛿2

𝐴◦
𝛿2

𝑋 ◦ 𝐵◦
𝛿1

𝐵◦
𝛿2

𝛿◦
1

𝑎◦
𝛿

1

𝑞◦
𝛿

1
𝛿

2

, quotient of Lie groups

𝑞𝛿
1
, finite quotient

𝑎◦
𝛿

2

𝛿◦
2

𝑞𝛿
2
, finite quotient

𝑎◦
𝛿

1

𝑎◦
𝛿

2

𝑞◦
𝛿

1
𝛿

2

where all morphisms are quasi-algebraic and all morphisms in the bottom row are morph-

isms of C-pairs, between (𝑋 ◦, 𝐷◦), (𝐵◦
𝛿1

,Δ◦
𝐵𝛿

1

) and (𝐵◦
𝛿2

,Δ◦
𝐵𝛿

2

).
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Choice 9.10 (Albanese of (𝑋, 𝐷)). Consider the numbers

𝑛𝛿 := #components in the typical fibre of 𝑎◦
𝛿

: 𝑋 ◦ → 𝐵◦
𝛿
,

𝑛min := min

{
𝑛𝛿 : 𝛿 ∈ 𝑀 and dim𝐵𝛿 = 𝑞+

Alb
(𝑋, 𝐷)

}
and choose one particular cover 𝛾 ∈ 𝑀 such that dim𝐵𝛾 = 𝑞+

Alb
(𝑋, 𝐷) and 𝑛𝛾 = 𝑛min.

Once the choice is made, consider the associated C-semitoric variety(
Alb𝑥 (𝑋, 𝐷),ΔAlb𝑥 (𝑋,𝐷 )

)
:= (𝐵𝛾 ,Δ𝐵𝛾 )

with its distinguished point 𝑎 := 𝑏𝛾 and associated morphism alb𝑥 (𝑋, 𝐷)◦ := 𝑎◦𝛾 . We will

show that this is an Albanese of (𝑋, 𝐷).
Approval
Erwan —
Stefan —Step 2: First properties of the construction. We need to show that our choice of

an Albanese does indeed satisfy the universal properties required by Definition 9.1. To

prepare for the proof, we study covers 𝛿 ∈ 𝑀 that factor via 𝛾 . The following claims show

that the C-morphism 𝑞◦
𝛿𝛾

: 𝐵◦
𝛿
→ 𝐵◦𝛾 of Reminder 9.9 is an isomorphism of C-pairs. The

proof makes extensive use of the notation introduced in Reminder 9.9. The reader might

wish to write down Diagram (9.9.1) in our particular situation, where 𝛿1 is replaced by 𝛿

and 𝛿2 is replaced by 𝛾 .

Claim 9.11. Assume that a cover 𝛿 ∈ 𝑀 factors via 𝛾 . Then, the morphism 𝑞◦
𝛿𝛾

of Re-

minder 9.9 is finite as a morphism of analytic varieties.

Proof of Claim 9.11. The choices made in Step 2 guarantee that 𝑞◦
𝛿𝛾

is a surjective Lie

group morphism between two groups of the same dimension. It follows that 𝑞◦
𝛿𝛾

is fi-

nite. As the induced morphism between (finite) Galois quotients, 𝑞◦
𝛿𝛾

is then likewise

finite. □ (Claim 9.11)

Claim 9.12. Assume that a cover 𝛿 ∈ 𝑀 factors via 𝛾 . Then, the morphism 𝑞◦
𝛿𝛾

of Re-

minder 9.9 is biholomorphic as a morphism of analytic varieties.

Proof of Claim 9.12. If 𝑧 ∈ img𝑎◦𝛾 ⊆ 𝐵◦𝛾 is general, observe that the following two condi-

tions hold.

The morphism 𝑞◦
𝛿𝛾

is étale over 𝑧: We have seen in Proposition 5.11 that 𝑧 is not

contained in the branch locus of the finite quotient map 𝑞𝛾 . In other words, 𝑞𝛾 is

étale over 𝑧. The finite group morphism 𝑞◦
𝛿𝛾

is étale everywhere, so that 𝑞𝛾 ◦ 𝑞◦
𝛿𝛾

=

𝑞◦
𝛿𝛾

◦ 𝑞𝛿 is étale over 𝑧. But then 𝑞◦
𝛿𝛾

is étale over 𝑧.

The set-theoretic fibre
(
𝑞◦
𝛿𝛾

)−1 (𝑧) ⊂ 𝐵◦
𝛿

is connected: This is a direct consequence

of the choices made in Step 2.

Given that the number of fibre components is constant in finite, étale morphisms, we

find that the finite morphism 𝑞◦
𝛿𝛾

has connected fibres. It is hence a one-sheeted analytic

covering in the sense of [Rem94, Sect. 14.2]. Together with normality [Rem94, Prop. 14.7]

applies to show that it is indeed biholomorphic. □ (Claim 9.12)

Claim 9.13. Assume that a cover 𝛿 ∈ 𝑀 factors via 𝛾 . Then, the morphism 𝑞◦
𝛿𝛾

of Re-

minder 9.9 is isomorphic as a morphism of C-pairs.

Proof. Using the biholomorphic map 𝑞◦
𝛿𝛾

to identify the analytic varieties 𝐵◦
𝛿

and 𝐵◦𝛾 , we

need to show that the boundary divisors induced by the quotient morphism 𝑞𝛿 and 𝑞𝛾
agree. The construction of categorical C-pair quotients, [KR24a, Cons. 12.4], tells us what

the boundaries are: If 𝐻𝛿 is any prime divisor in 𝐵◦
𝛿

and if we choose prime divisors in
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the preimages spaces,

𝐻𝛾 =
( (
𝑞◦
𝛿𝛾

)−1
)∗
𝐻𝛿 prime divisor in 𝐵◦𝛾

𝐻𝛾 ≤
(
𝑞𝛾
)∗
𝐻𝛾 prime divisor in 𝐴◦

𝛾

𝐻𝛿 ≤
(
𝑞◦
𝛿𝛾

)∗
𝐻𝛾 prime divisor in 𝐴◦

𝛿
,

then

multC,𝐻𝛿
Δ◦
𝐵𝛿

= mult
𝐻𝛿

(
𝑞𝛿
)∗
𝐻𝛿 and multC,𝐻𝛾

Δ◦
𝐵𝛾

= mult
𝐻𝛾

(
𝑞𝛿
)∗
𝐻𝛾 .

But these two numbers agree, given that 𝑞◦
𝛿𝛾

and 𝑞◦
𝛿𝛾

are étale. □ (Claim 9.13)

Approval
Erwan —
Stefan — Step 4: Universal property. We will now show that the constructions of the previous

steps satisfies the universal property spelled out in Definition 9.1. We fix the setting for

the remainder of the present proof.

Setting 9.15 (Universal property). Let (𝐵,Δ𝐵) be a C-semitoric variety with distinguished

point 𝑏 ∈ 𝐵◦ and assume that a quasi-algebraic C-morphism 𝑎◦ : (𝑋 ◦, 𝐷◦) → (𝐵◦,Δ◦
𝐵
) is

given that sends 𝑥 to 𝑏. Let

(𝐵,Δ𝐵) � (𝐴,Δ𝐴)
/
𝐺

be a presentation of the C-semitoric variety, with quotient morphism 𝑞 : 𝐴 ↠ 𝐵.

We need to show that the C-morphism 𝑎◦ factors via 𝑎◦𝛾 uniquely. In other words, we

need to find a quasi-algebraic C-morphism 𝑐◦ fitting into a diagram

(9.16.1) (𝑋 ◦, 𝐷◦)
(
𝐵◦𝛾 ,Δ

◦
𝐵𝛾

)
(𝐵◦,Δ◦

𝐵
),

𝑎◦𝛾

𝑎◦

∃!𝑐◦

and prove that 𝑐◦ is unique with this property.
Approval
Erwan —
Stefan — Step 4a: Existence of a factorization. Maintaining Setting 9.15, we show that there

exists one quasi-algebraic C-morphism 𝑐◦ :

(
𝐵◦𝛾 ,Δ

◦
𝐵𝛾

)
→ (𝐵◦,Δ◦

𝐵
) that makes Dia-

gram (9.16.1) commute.

Construction 9.17 (Fibre product). Choose a component of the normalized fibre product

𝑋𝜌 ⊆ normalization of 𝐴 ×𝐵 𝑋 .

Denote the projection morphisms and their restrictions as follows,

(9.17.1)

𝑋𝜌 𝑋 ◦
𝜌 𝐴◦ 𝐴

𝑋 𝑋 ◦ 𝐵◦ 𝐵.

𝜌 , quotient

⊇

𝜌◦

𝑎◦

𝑞◦

⊆

𝑞, quotient

⊇
𝑎◦

⊆

Observation 9.18 (Group actions in (9.17.1)). The group𝐺 acts on the fibre product𝐴×𝐵𝑋

and on its normalization. The stabilizer of 𝑋𝜌 ,

𝐻 := Stab

(
𝑋𝜌

)
⊆ 𝐺,

acts on 𝑋𝜌 , and 𝜌 : 𝑋𝜌 ↠ 𝑋 is quotient map of this action. The projection map 𝜌 is

therefore Galois. In other words, 𝜌 ∈ 𝑀 . The Galois group is the quotient of 𝐻 by the

ineffectivity,

𝐺𝜌 = 𝐻
/(

ker𝐻 → Aut𝑋𝜌

)
.

The projection map 𝑎◦ is equivariant with respect to the action of 𝐻 .
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Assumption w.l.o.g. 9.19 (𝑎◦ preserves distinguished points). Choosing the group structure

on𝐴◦
appropriately, we assume without loss of generality that the morphism 𝑎◦ maps the

distinguished point 𝑥𝜌 ∈ 𝑋 ◦
𝜌 to the neutral element 0𝐴◦ ∈ 𝐴◦

.

Observation 9.20 (Factorization via the Albanese of the cover). We have seen in [KR24a,

Obs. 12.11] that the quotient morphism 𝑞◦ is an adapted cover for the pair (𝐵◦,Δ◦
𝐵
) and

that the adapted differentials are described as

Ω [1]
(𝐵◦,Δ◦

𝐵
,𝑞◦ ) = Ω1

(𝐵◦,𝐵◦
𝐵
,𝑞◦ ) = Ω1

𝐴◦ .

The assumption that 𝑏◦ is a C-morphism guarantees by definition that Diagram (9.17.1)

admits pull-back of adapted reflexive differentials, so that the composed pull-back morph-

ism

(𝑎◦)∗Ω1

𝐴◦ = (𝑎◦)∗Ω1

(𝐵◦,𝐵◦
𝑆
,𝑞◦ )

d𝑎◦−−−→ Ω1

𝑋 ◦
𝜌

→ Ω [1]
𝑋 ◦
𝜌

takes its image in the subsheaf Ω [1]
(𝑋 ◦,𝐷◦,𝜌 ) ⊆ Ω [1]

𝑋 ◦
𝜌

. Together with Assumption 9.19, the

universal property of the Albanese for the cover 𝜌 , Item (5.2.3) of Definition 5.2, will then

guarantee that 𝑎◦ factors as

(9.20.1) 𝑋 ◦
𝜌 𝐴◦

𝜌 𝐴◦,

𝑎◦

𝑎◦𝜌 𝛼◦

where 𝛼◦ is a quasi-algebraic morphism of Lie groups. There is more that we can say. On

the one hand,𝐺𝜌 is the Galois group of covering morphism𝐺𝜌 and therefore acts on 𝐴𝜌 ,

the Albanese of the cover 𝜌 . On the other hand, 𝐺𝜌 is a normal subgroup of 𝐺 = Gal(𝑞)
and therefore acts on 𝐴◦

. The universal property of the Albanese 𝐴𝜌 guarantees that the

map 𝛼◦ is equivariant with respect to the 𝐺𝜌 -action.

Claim 9.21 (Extension of (9.17.1) and (9.20.1)). There exists a commutative diagram of

morphisms between analytic varieties,

(9.21.1)

𝑋 ◦
𝜌 𝐴◦

𝜌 𝐴◦ 𝐴◦

𝑋 ◦ 𝐵◦𝜌 𝐴◦
/
𝐻 𝐴◦

/
𝐺,

𝜌◦

𝑎◦𝜌

𝑎◦

𝛼◦

𝑞𝜌 , quot. by 𝐺𝜌
𝑞′𝜌 , quot. by 𝐺𝜌 𝑞◦ , quot. by 𝐺

𝑎◦𝜌

𝑎◦

𝛼◦ 𝛽◦

where all morphisms in the bottom row are quasi-algebraic C-morphisms between

(𝑋 ◦, 𝐷◦) and the C-pairs

(𝐵◦𝜌 ,Δ◦
𝐵𝜌
) = (𝐴◦

𝜌 , 0)
/
𝐺𝜌

= (𝐴◦
𝜌 , 0)

/
𝐻, (𝐴◦, 0)

/
𝐻 and (𝐵◦,Δ◦

𝐵) = (𝐴◦, 0)
/
𝐺.

Proof of Claim 9.21. Given that 𝐴◦
is a Lie group and hence smooth, recall from [KR24a,

Ex. 8.6] that the 𝐻 -equivariant morphism 𝛼◦ is a C-morphism between the trivial pairs

(𝐴◦
𝜌 , 0) and (𝐴◦, 0). Let 𝛼◦ be induced the C-morphism between the quotients

(𝐵◦𝜌 ,Δ◦
𝐵𝜌
) = (𝐴◦

𝜌 , 0)
/
𝐻 and (𝐴◦, 0)

/
𝐻,

as discussed in [KR24a, Prop. 12.7]. This morphism makes the middle square in (9.21.1)

commute.
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Next, we need to define the morphism 𝛽◦. For that, review the definition of categorical

quotients of C-pairs, [KR24a, Def. 12.3]. The definition guarantees on the one hand that

𝑞′𝜌 and 𝑞◦ are C-morphisms between the C-pairs

(𝐴◦, 0), (𝐴◦, 0)
/
𝐻 and (𝐴◦, 0)

/
𝐺.

Given that 𝑞◦ is constant on the fibres of 𝑞′𝜌 , the definition also says that 𝑞◦ factors via 𝑞′𝜌 ,

as required. The induced C-morphism 𝛽◦ makes the right square in (9.21.1) commute.

It remains to show that 𝑎◦ = 𝛽◦ ◦ 𝛼◦ ◦ 𝑎◦𝜌 . That, however, follows from the equality

𝑞◦ ◦ 𝑎◦ = 𝑎◦ ◦ 𝜌◦ given by (9.17.1), using that 𝜌◦ is surjective. □ (Claim 9.21)

Assumption w.l.o.g. 9.22 (Factorization of 𝛾 ). The C-pair

(
𝐵◦𝛾 ,Δ

◦
𝐵𝛾
) and the morphism 𝑎◦𝛾

have been defined above using the cover 𝛾 , but we have seen in Claim 9.13 that they can

equally be defined by any cover that factors via 𝛾 . Replacing 𝑋𝛾 by the Galois closure of

a suitable normalized fibre product, we may therefore assume without loss of generality

that 𝛾 factors via 𝜌 .

𝑋𝛾 𝑋𝜌 𝑋 .

𝛾

𝜌

With Assumption 9.22 in place, the existence of a factorization is now immediate. Re-

minder 9.9 decomposes the left square in (9.21.1) as follows,

𝑋 ◦
𝛾 𝐴◦

𝛾 𝐴◦
𝜌

𝑋 ◦ 𝐵◦𝛾 𝐵◦𝜌

𝛾◦

𝑎◦𝜌

𝑎◦𝛾

𝑞◦𝛾

𝑞◦𝛾𝜌

𝑞◦𝜌

𝑎◦𝛾

𝑎◦𝜌

𝑞◦
𝛾𝛿

where all morphisms are quasi-algebraic and all morphisms in the bottom row are morph-

isms of C-pairs, between (𝑋 ◦, 𝐷◦), (𝐵◦𝛾 ,Δ◦
𝐵𝛾
) and (𝐵◦𝜌 ,Δ◦

𝐵𝜌
). We can then set

𝑐◦ := 𝛽◦ ◦ 𝛼◦ ◦ 𝑞◦
𝛾𝛿
.

A factorization is thus found.Approval
Erwan —
Stefan — Step 4b: Uniqueness of the factorization. Maintain Setting 9.15 and assume that there

are two quasi-algebraic C-morphisms that makes Diagram (9.16.1) commute,

(9.23.1) (𝑋 ◦, 𝐷◦)
(
𝐵◦𝛾 ,Δ

◦
𝐵𝛾

)
(𝐵◦,Δ◦

𝐵
).

𝑎◦𝛾

𝑎◦

∃ 𝑐◦
1
, 𝑐◦

2

We need to show that the two morphisms are equal, 𝑐◦
1
= 𝑐◦

2
.

Construction 9.24 (Lifting 𝑐◦• to Lie group morphisms). Theorem 8.4 equips us a with semi-

toric varieties 𝐴◦
𝛾,• ⊂ 𝐴𝛾 , quasi-algebraic isogenies 𝑖◦• : 𝐴◦

𝛾,• ↠ 𝐴◦
𝛾 and quasi-algebraic Lie

group morphisms Φ◦
• : 𝐴◦

𝛾,• → 𝐴◦
forming commutative diagrams as in (8.4.1). Blowing

up in a left-invariant manner, we may assume without loss of generality that the quasi-

algebraic isogenies extend to morphisms 𝑖• : 𝐴𝛾,• ↠ 𝐴𝛾 .

Define a semitoric variety 𝐴◦
𝛾 ⊂ 𝐴𝛾 by choosing strong resolution of a component

of the fibre product 𝐴𝛾,1 ×𝐴𝛾
𝐴◦
𝛾,2 and by choosing a suitable neutral element in 𝐴◦

𝛾 that

projects to the neutral elements in 𝐴◦
𝛾,•. The natural maps

𝐴◦
𝛾 ↠ 𝐴◦

𝛾,• ↠ 𝐴◦
𝛾
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are then quasi-algebraic isogenies. Compose the projection maps 𝐴◦
𝛾 → 𝐴◦

𝛾,• with Φ◦
• to

obtain quasi-algebraic Lie group morphisms 𝜑◦
that make the following diagram com-

mute,

(9.24.1)

𝐴◦
𝛾 𝐴◦

𝐴◦
𝛾 𝐴◦

𝐵◦𝛾 𝐵◦.

𝑖◦ , quasi-algebraic

isogeny

𝜑◦
• , quasi-algebraic

group morphism

𝑞◦𝛾 , quotient 𝑞◦ , quotient

𝑐◦•

Construction 9.25 (Dominating 𝛾 ). Continuing Construction 9.24, choose a component of

the normalized fibre product𝐴𝛾 ×𝐴𝛾
𝑋𝛾 and let𝑋𝛿 be the Galois closure of that component

over 𝑋 . We obtain a Galois cover 𝛿 : 𝑋𝛿 ↠ 𝑋 and a commutative diagram of quasi-

algebraic morphisms as follows,

(9.25.1)

𝑋 ◦
𝛿

𝐴◦
𝛾

𝑋 ◦
𝛾 𝐴◦

𝛾

𝑋 ◦ 𝐵◦𝛾 .

𝛿◦ , Galois cover

𝜇◦

𝑖◦ , quasi-algebraic

isogeny

𝛾◦

𝑎◦𝛾

𝑞◦𝛾 , quotient

𝑎◦𝛾

Precomposing 𝜇◦ with a suitable Galois morphism of𝑋 ◦
𝛿

over𝑋 ◦
𝛾 , we assume without loss

of generality that 𝜇◦ maps the distinguished point 𝑥𝛿 ∈ 𝑋 ◦
𝛿

to 0𝐴◦
𝛿
.

Observation 9.26 (Factorization via the Albanese of the cover). In analogy to Observa-

tion 9.20, recall from [KR24a, Obs. 12.11] that the quotient morphism 𝑞◦𝛾 is an adapted

cover for the pair (𝐵◦𝛾 ,Δ◦
𝐵𝛾
). Since 𝑖◦ is étale, the adapted differentials are described as

Ω [1]
(𝐵◦

𝛾 ,Δ
◦
𝐵𝛾

,𝑖◦◦𝑞◦ ) = Ω1

𝐴◦
𝛿

.

Since 𝑎◦𝛾 is a C-morphism, Diagram (9.25.1) admits pull-back of adapted reflexive differ-

entials. The composed pull-back morphism

(𝜇◦)∗Ω1

𝐴◦
𝛿

= (𝜇◦)∗Ω1

(𝐵◦
𝛾 ,Δ

◦
𝐵𝛾

,𝑖◦◦𝑞◦ )
d 𝜇◦

−−−→ Ω1

𝑋 ◦
𝛿

→ Ω [1]
𝑋 ◦
𝛿

takes its image in the subsheaf Ω [1]
(𝑋 ◦,𝐷◦,𝛿◦ ) ⊆ Ω [1]

𝑋 ◦
𝛿

. The universal property of the Albanese

for the cover𝛿◦, Item (5.2.3) of Definition 5.2, will then guarantee that𝑎◦ factors as follows,

(9.26.1) 𝑋 ◦
𝜌 𝐴◦

𝛿
𝐴◦
𝛾 .

𝜇◦

𝑎◦
𝛿

𝜈◦ , quasi-algebraic

group morphism
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Summary 9.27. Combining (9.24.1), (9.25.1) and (9.26.1), the following digrams summarize

the constructions obtained so far,

𝑋 ◦
𝛿

𝐴◦
𝛿

𝐴◦
𝛾 𝐴◦

𝑋 ◦
𝛾 𝐴◦

𝛾 𝐴◦
𝛾 𝐴◦

𝑋 ◦ 𝐵◦𝛾 𝐵◦𝛾 𝐵◦.

𝛿◦

𝑎◦
𝛿

𝜇◦

𝑞◦
𝛿𝛾

𝜈◦ , quasi-algebraic

group morphism

𝑖◦ , quasi-algebraic

isogeny

𝜑◦
• , quasi-algebraic

group morphism

𝛾◦

𝑎◦𝛾

𝑞◦𝛾 𝑞◦𝛾 𝑞◦

𝑎◦𝛾

𝑎◦

𝑐◦•

Setting 𝑐̂◦• := 𝜑◦
• ◦ 𝜈◦, we are interested in the subdiagrams

(9.27.1)

𝑋 ◦
𝛿

𝐴◦
𝛿

𝐴◦

𝑋 ◦ 𝐵◦𝛾 𝐵◦.

𝛿◦

𝑎◦
𝛿

𝑞◦𝛾 ◦𝑞◦𝛿𝛾

𝑐̂◦• , quasi-algebraic

group morphism

𝑞◦

𝑎◦𝛾

𝑎◦

𝑐◦•

Claim 9.28 (Aligning the 𝑐̂◦•). Recalling that𝐺 is the Galois group of the morphism𝑞, there

exists an element 𝑔 ∈ 𝐺 such that the following two conditions hold.

(9.28.1) The associated Galois map 𝑔 : 𝐴◦ → 𝐴◦
is a group morphism.

(9.28.2) We have 𝑐̂1 ◦ 𝑎◦𝛿 = 𝑔 ◦ 𝑐̂2 ◦ 𝑎◦𝛿 .

Proof of Claim 9.28. For every point of 𝑥 ∈ 𝑋 ◦
𝛾 , commutativity of (9.27.1) guarantees that

the image points 𝑐̂• ◦ 𝑎◦𝛾 (𝑥) are contained in the same fibre of the Galois morphism 𝑞◦.

Accordingly, there exists an element 𝑔𝑥 ∈ 𝐺 such that

(9.28.3) 𝑐̂1 ◦ 𝑎◦𝛿 (𝑥) = 𝑔𝑥 ◦ 𝑐̂2 ◦ 𝑎◦𝛿 (𝑥).

But since 𝐺 is finite, there exists one 𝑔 ∈ 𝐺 such that 9.28.3 holds for every 𝑥 ∈ 𝑋 ◦
𝛿

. In

other words: Condition (9.28.2) holds for 𝑔.

It remains to show that Condition (9.28.1) also holds. To this end, recall that the Al-

banese map 𝑎◦
𝛿

maps the distinguished point 𝑥𝛿 ∈ 𝑋 ◦
𝛿

to 0𝐴◦
𝛿
. Since 𝑐̂◦• are group morph-

isms, we find that

𝑐̂◦
1
◦ 𝑎◦

𝛿
(𝑥𝛿 ) = 𝑐̂◦2 ◦ 𝑎◦𝛿 (𝑥𝛿 ) = 0𝐴◦ ,

and (9.28.3) implies that 𝑔 must preserve 0𝐴◦ . Given that the associated Galois map 𝑔 :

𝐴◦ → 𝐴◦
extends from 𝐴◦

to 𝐴 holomorphically, it clearly quasi-algebraic. But then, we

have seen in Proposition 3.12 that 𝑔 is a morphism of Lie groups, as required in (9.28.1)

above. □ (Claim 9.28)

Given one Galois element 𝑔 ∈ 𝐺 as in Claim 9.28, observe that

img𝑎◦𝛾 ⊆ ker

(̂
𝑐1 − 𝑔 ◦ 𝑐̂2

)
⊆ 𝐴◦

𝛿
.

Recalling from Proposition 5.5 that img𝑎◦
𝛿

generates𝐴◦
𝛿

as a group, we find that 𝑐̂1 = 𝑔◦𝑐̂2.

Commutativity of (9.24.1) and surjectivity of 𝑞◦
𝛿

then show that 𝑐◦
1
= 𝑐◦

2
, as required.
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10.1. Irregularities. If (𝑋, 𝐷) is a locally uniformizable C-pair where 𝑋 is compact

Kähler, we have seen in Proposition ?? that

𝑞+
Alb

(𝑋, 𝐷) ≤ 𝑞+ (𝑋, 𝐷).

We remark that the inequality dim Alb𝑥 (𝑋, 𝐷,𝛾)◦ ≤ 𝑞(𝑋, 𝐷,𝛾) may be a strict inequal-

ity as shown by the following example.

Example 10.1. Let 𝐶 be a complex projective curve of genus 𝑔 ≥ 2 and 𝜋 : 𝐷 → 𝐶 a

2-sheeted covering of 𝐶 ramified over a divisor 𝑅 ∈ |𝐾⊗2

𝐶
|. The Prym variety 𝑃 of 𝜋 is

the identity component of the kernel of the morphism 𝐽 (𝐷) → 𝐽 (𝐶). It is known that a

very general Prym variety 𝑃 of a ramified covering is simple. Indeed, the closure of the

Prym locus contains the Jacobian locus and a very generic Jacobian is simple. We have

𝐻 0 (𝐷, 𝜋∗𝐾𝐶 ) = 𝐻 0 (𝐶,𝐾𝐶 ) ⊕ 𝐻 0 (𝐶,O𝐶 ) and 𝐻 0 (𝐷,𝐾𝐷 ) = 𝐻 0 (𝐶, 2𝐾𝐶 ) ⊕ 𝐻 0 (𝐶,𝐾𝐶 ), so

ℎ0 (𝐷,𝐾𝐷 ) > ℎ0 (𝐷, 𝜋∗𝐾𝐶 ) > ℎ0 (𝐶,𝐾𝐶 ) = dim 𝐽 (𝐶).
On the other hand, consider the adapted Albanese with respect to 𝜋∗𝐾𝐶 where 𝑃 is

simple. We obtain that the dimension of the adapted Albanese is generically equal to

the dimension of 𝐽 (𝐶). So adapted differentials cannot be all recovered from the adapted

Albanese.

We do not understand the meaning of this inequality. If the inequality is strict, this

means that adapted differentials come in two types: a subset of the adapted differentials

comes from a morphism to a C-semitoric variety, whereas the “general” adapted differ-

ential is not induced by such a morphism. We do not understand this distinction and

wonder if there is a geometric explanation, perhaps in Hodge-theoretic terms.
Approval
Erwan —
Stefan —10.2. Extension. The extension result for adapted reflexive differentials that we presen-

ted in Theorem 2.8 provides us with extension maps,

𝑑C𝜋 : 𝐻 0
(
𝑋, Ω

[𝑝 ]
(𝑋,𝐷𝑋 ,𝛾 )

)
→ 𝐻 0

(
𝑋, Ω

𝑝

𝑋
(logΔ

𝑋
)
)
, for every number 𝑝.

The construction of the Albanese however uses only the case where 𝑝 = 1.

• We do not believe that Theorem 2.8 is optimal for 1-forms. In line with earlier results

[vSS85, Fle88], we expect that adapted reflexive 𝑝-forms become easier to extend,

the smaller the value of 𝑝 . A precise statement is still missing. Are there results

of the form “the extension behaviour of 𝑝-forms follows the extension behaviour

(𝑝 + 1)-forms” that could be seen as analogues of [KS21, Thm. 1.4]?

• In analogy to the results obtained in [KS21], is there a class of pairs that behave

optimally with respect to extension?

If it is possible to prove an “Extension Theorem for 1-forms” for a given C-pair (𝑋, 𝐷)
that is not necessarily locally uniformizable, we might be able to define an augmented

Albanese irregularity 𝑞+
Alb

(𝑋, 𝐷). If cases where this is finite, an Albanese might exist.

Pedro Núñez has addressed some of these questions for pairs with klt singularities in

his Ph.D. thesis [Nú23]. A “bigger picture” is however still missing.
Approval
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Stefan —10.3. Existence of the Albanese. Given a locally uniformizable C-pair (𝑋, 𝐷) with

𝑞+
Alb

(𝑋, 𝐷) = ∞, it might be possible to define a meaningful Albanese as an ind-variety or

as a (yet to be defined) ind-C-pair.
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