% % Do not edit the following line. The text is automatically updated by % subversion. % \svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $} \selectlanguage{british} \section{The Albanese for compact manifolds} \begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}% Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An Albanese of the pointed manifold $X$, $x \in X$ is a compact torus quotient $A$ and a pointed $\cC$-morphism \[ a : X → A, \quad x \mapsto 0_A \] such that the following universal property holds: If $S$ is any other compact torus and if \[ s : X → S, \quad x \mapsto 0_S \] is any pointed morphism, then there exists a unique morphism $c$ making the following diagram commutative, \[ \begin{tikzcd} X \ar[r, "a"'] \ar[rr, "s", bend left=20] & A \ar[r, "∃!c"'] & S. \end{tikzcd} \] \end{defn} \begin{rem} The morphism $c$ of Definition~\ref{def:1-1} maps $0_A$ to $0_S$ and is therefore a Lie group morphism. \end{rem} \begin{rem} The universal property guarantees that the Albanese of Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak of ``the Albanese''. When precision is required, we denote the Albanese as \[ \alb_x (X) : X → \Alb_x X. \] \end{rem} \section{The Albanese for compact pairs with trivial boundary} \todo{define torus quotient} \begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-2}% Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An Albanese of the pointed $\cC$-pair $(X,0)$, $x \in X$ is a pointed torus quotient $(A, Δ_A)$, $a \in A$ and a pointed $\cC$-morphism \[ a : (X,0) → (A, Δ_A), \quad x \mapsto a \] such that the following universal property holds: If $(S, Δ_S)$, $s ∈ S$ is any other pointed torus quotient and if $s : (X,0) → (S, Δ_S)$ is any pointed $\cC$-morphism, then there exists a unique pointed $\cC$-morphism $c$ making the following diagram commutative, \[ \begin{tikzcd}[column sep=2.4cm] (X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S). \end{tikzcd} \] \end{defn} \begin{rem} The $\cC$-morphism $c$ of Definition~\ref{def:1-2} maps $a$ to $s$ and is therefore a morphism of pointed pairs. \end{rem} \begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-1}% Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An Albanese of $(X,0)$ is a pointed torus quotient $\bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr)$, $a \in \Alb_x(X,0)$ and a $\cC$-morphism \[ \alb_x(X,0) : (X,0) → \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) \] such that the following holds. \begin{enumerate} \item The morphism $\alb_x(X,0)$ sends $x$ to $a$. \item If $(S, Δ_S)$, $s ∈ S$ is any other pointed torus quotient and if $s : (X,0) → (S, Δ_S)$ is any $\cC$-morphism that sends $x$ to $s$, then $s$ factors uniquely as \[ \begin{tikzcd}[column sep=2.4cm] (X, 0) \ar[r, "\alb_x(X{,}D)"'] \ar[rr, "s", bend left=10] & \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) \ar[r, "∃!c"'] & (S, Δ_S). \end{tikzcd} \] \end{enumerate} \end{defn} \begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} % Let $(X, D)$ be a $\cC$-pair where $X$ is compact Kähler. If $q⁺_{\Alb}(X,D) < ∞$, then an Albanese of $(X,D)$ exists. \end{thm} % !TEX root = orbiAlb1