% % Do not edit the following line. The text is automatically updated by % subversion. % \svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $} \selectlanguage{british} \section{The Albanese for compact manifolds} \begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}% Let $X$ be a compact Kähler manifold. An Albanese of the manifold $X$ is a compact torus $A$ and a morphism $a : X → A$, such that the following universal property holds: If $S$ is any other compact torus and if $s : X → S$, is any morphism, then there exists a unique morphism $c$ making the following diagram commutative, \[ \begin{tikzcd} X \ar[r, "a"'] \ar[rr, "s", bend left=20] & A \ar[r, "∃!c"'] & S. \end{tikzcd} \] \end{defn} \begin{rem} If it exists, the universal property guarantees that the Albanese of Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak of ``the Albanese''. When precision is required, we denote the Albanese as \[ \alb (X) : X → \Alb X. \] \end{rem} \section{The Albanese for compact pairs with trivial boundary} \todo{define torus quotient} \begin{defn}[\protect{The Albanese of a compact pair with trivial boundary, \cite[Def.~9.1]{orbiAlb2}}]\label{def:1-2}% Let $X$ be a compact Kähler manifold. An Albanese of the $\cC$-pair $(X,0)$ is a torus quotient $(A, Δ_A)$ and a $\cC$-morphism \[ a : (X,0) → (A, Δ_A), \] such that the following universal property holds: If $(S, Δ_S)$ is any other torus quotient and if $s : (X,0) → (S, Δ_S)$ is any $\cC$-morphism, then there exists a unique $\cC$-morphism $c$ making the following diagram commutative, \[ \begin{tikzcd}[column sep=2.4cm] (X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S). \end{tikzcd} \] \end{defn} \begin{rem} If it exists, the universal property guarantees that the Albanese of Definition~\ref{def:1-2} is unique up to unique morphism, allowing us to speak of ``the Albanese''. When precision is required, we denote the Albanese as \[ \alb (X,0) : (X,0 → \Alb (X,0). \] \end{rem} \begin{thm}[\protect{Existence of the Albanese, \cite[Thm.~9.2]{orbiAlb2}}]\label{thm:22-1} % Let $X$ be a compact Kähler manifold. If $q^+_{\Alb}(X,0) < ∞$, then an Albanese of $(X,0)$ exists. \qed \end{thm} % !TEX root = orbiAlb1