From 8585a0877948c241b4f3b87149c5097c50bda781 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Fri, 7 Jun 2024 14:28:04 +0200 Subject: [PATCH] Done for today. --- .vscode/ltex.dictionary.en-GB.txt | 3 ++ 01-intro.tex | 6 +-- 02-ratlCurves.tex | 63 +++++++++++++++++++++++++------ 3 files changed, 57 insertions(+), 15 deletions(-) diff --git a/.vscode/ltex.dictionary.en-GB.txt b/.vscode/ltex.dictionary.en-GB.txt index 4f3d278..f43a70e 100644 --- a/.vscode/ltex.dictionary.en-GB.txt +++ b/.vscode/ltex.dictionary.en-GB.txt @@ -27,3 +27,6 @@ Albanese Hirzebruch multiplicitity subvariety +Cremona +equivariant +bimeromorphic diff --git a/01-intro.tex b/01-intro.tex index f64ec6a..468f141 100644 --- a/01-intro.tex +++ b/01-intro.tex @@ -36,7 +36,7 @@ \todo{define torus quotient} -\begin{defn}[The $\cC$-Albanese of a compact pair with trivial boundary]\label{def:1-2}% +\begin{defn}[\protect{The Albanese of a compact pair with trivial boundary, \cite[Def.~9.1]{orbiAlb2}}]\label{def:1-2}% Let $X$ be a compact Kähler manifold. An Albanese of the $\cC$-pair $(X,0)$ is a torus quotient $(A, Δ_A)$ and a $\cC$-morphism \[ @@ -61,9 +61,9 @@ \] \end{rem} -\begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} % +\begin{thm}[\protect{Existence of the Albanese, \cite[Thm.~9.2]{orbiAlb2}}]\label{thm:22-1} % Let $X$ be a compact Kähler manifold. If $q^+_{\Alb}(X,0) < ∞$, then an - Albanese of $(X,0)$ exists. + Albanese of $(X,0)$ exists. \qed \end{thm} diff --git a/02-ratlCurves.tex b/02-ratlCurves.tex index 4b239b8..e33a3f5 100644 --- a/02-ratlCurves.tex +++ b/02-ratlCurves.tex @@ -26,12 +26,9 @@ \bP¹ \ar[r, "n\text{, normalization}"'] \ar[rr, bend left=15, "\eta"] & C \ar[r, "\text{inclusion}"'] & X. \end{tikzcd} \] - Consider the points $0 \in \bP¹$ and $x' := n(0) \in X$. - - Given that $X$ is smooth, recall from \cite{orbiAlb1} that $\eta$ is a - $\cC$-morphism, between $\cC$-pairs $(\bP¹, 0)$ and $(X, 0)$. Since - $\Alb(\bP¹,0)$ exists, the universal property of the Albanese yields a - diagram + Given that $X$ is smooth, recall from \cite[Ex.~8.6]{orbiAlb1} that $\eta$ is + a $\cC$-morphism, between $\cC$-pairs $(\bP¹, 0)$ and $(X, 0)$. Since + $\Alb(\bP¹,0)$ exists, the universal property of the Albanese yields a diagram \[ \begin{tikzcd}[column sep=2cm] \bP¹ \ar[r, "\alb(\bP¹{,}0)"] \ar[d, "n"'] & \Alb(\bP¹,0) \ar[d] \\ @@ -41,15 +38,18 @@ The claim follows immediately once we observe that $\Alb(\bP¹,0)$ is a point. \end{proof} +\todo{There is nothing special about $\bP¹$ here. This works for every space with nontrivial $\cC$-Albanese.} + \begin{cor}\label{cor:2}% - In Setting~\ref{set:1}, let $\mu : X \to Y$ be a morphism to a normal - projective variety. If all fibres of $\mu$ are rationally chain connected, - then $\alb(X,0)$ factors via $\mu$, + In Setting~\ref{set:1}, let $\mu : X \to Y$ be a morphism to a normal analytic + variety. If all fibres of $\mu$ are rationally chain connected, then + $\alb(X,0)$ factors via $\mu$, \[ \begin{tikzcd} X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb(X,0). \end{tikzcd} \] + \qed \end{cor} \begin{cor}\label{cor:3}% @@ -57,13 +57,52 @@ $\Alb(X,0)$ is a point. \end{cor} + +\begin{cor}\label{cor:4}% + In Setting~\ref{set:1}, let $\mu : X \to Y$ be a bimeromorphic modification of + a compact manifold $Y$. Then, $\alb(X,0)$ factors via $\mu$, + \[ + \begin{tikzcd} + X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb(X,0), + \end{tikzcd} + \] + the morphism $\beta$ is a $\cC$-morphism between the pairs $(Y,0)$ and + $\Alb(X,0)$, and $\beta : (Y,0) \to \Alb(Y,0)$ is an Albanese of $(Y,0)$. +\end{cor} +\begin{proof} + \todo{PENDING} +\end{proof} + +\begin{cor}\label{cor:5}% + In Setting~\ref{set:1}, let $Y$ be a compact Kähler manifold bimeromorphic to + $X$. Then, an Albanese of $(Y,0)$ exists. If $f : X \dasharrow Y$ is + bimeromorphic, then there exists a unique morphism of $\cC$-pairs rendering + the following diagram commutative, + \[ + \begin{tikzcd} + X \ar[d, "\alb(X{,}0)"'] \ar[r, dashed, "f"] & Y \ar[d, "\alb(Y{,}0)"'] \\ + \Alb(X,0) \ar[r, "\exists! \alb(f)"'] & \Alb(Y,0) + \end{tikzcd} + \] +\end{cor} +\begin{proof} + \todo{PENDING} +\end{proof} + +\begin{cor}\label{cor:6}% + In Setting~\ref{set:1}, the automorphism group of $X$ and the Cremona group + act on $\Alb(X,0)$ in a way that makes the morphism $\alb(X,0)$ equivariant. +\end{cor} +\begin{proof} + \todo{PENDING} +\end{proof} + \todo{ \begin{itemize} + \item Need example where a rational variety has a \item Factorization via minimal model. - \item Independence of bimeromorphic model. - \item Factorization via MRC quotient. + \item For varieties of general type, factorization via the canonical. \end{itemize} - } \begin{example}[Theorem~\ref{thm:1} is wrong for singular spaces]