97 lines
3.1 KiB
TeX
97 lines
3.1 KiB
TeX
|
%
|
||
|
% Do not edit the following line. The text is automatically updated by
|
||
|
% subversion.
|
||
|
%
|
||
|
\svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $}
|
||
|
\selectlanguage{british}
|
||
|
|
||
|
\section{The $\cC$-Albanese morphism in the presence of rational curves}
|
||
|
\subversionInfo
|
||
|
|
||
|
\begin{thm}\label{thm:1}
|
||
|
Let $X$ be a projective manifold and let $x \in X$ be any point. If $C \subset
|
||
|
X$ is a rational curve, then the Albanese morphism of the $\cC$-pair $(X,0)$,
|
||
|
\[
|
||
|
\alb_x(X,0) : X \to \Alb_x(X,0),
|
||
|
\]
|
||
|
maps the curve $C$ to a point.
|
||
|
\end{thm}
|
||
|
\begin{proof}
|
||
|
\todo{PENDING}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.}
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{cor}\label{cor:2}
|
||
|
Let $X$ be a projective manifold and let $x \in X$ be any point. Let $\mu : X
|
||
|
\to Y$ be a morphism to a normal projective variety. If all fibres of $\mu$
|
||
|
are rationally chain connected, then $\alb_x(X,0)$ factors via $\mu$,
|
||
|
\[
|
||
|
\begin{tikzcd}
|
||
|
X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb_x(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb_x(X,0).
|
||
|
\end{tikzcd}
|
||
|
\]
|
||
|
\end{cor}
|
||
|
|
||
|
\begin{rem}
|
||
|
---
|
||
|
\begin{itemize}
|
||
|
\item Corollary~\ref{cor:2} does not equip $Y$ with the structure of a $\cC$-pair.
|
||
|
\item Corollary~\ref{cor:2} does not assume that $\mu$ is a morphism of $\cC$-pairs.
|
||
|
\item Even if $\mu$ is a morphism of $\cC$-pairs, Corollary~\ref{cor:2}
|
||
|
does not claim that $\beta$ is a morphism of $\cC$-pairs.
|
||
|
\item Corollary~\ref{cor:2} neither gives a morphism between $\Alb_x(X,0)$
|
||
|
and $\Alb_{\mu(x)}(Y,0)$ nor does it claim that these are isomorphic.
|
||
|
\end{itemize}
|
||
|
\end{rem}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item \todo{Kummer K3s are nice examples where the Albanese grows when we
|
||
|
contract rational curves.}
|
||
|
\item \todo{Want more examples to showcase all the things that can go wrong.}
|
||
|
\item \todo{Corollary~\ref{cor:2} implies that the $\cC$-Albanese map factors
|
||
|
via the MRC fibration of $X$, and via any map from $X$ to one of its minimal
|
||
|
models. This should be exploitable in geometrically meaningful situations.}
|
||
|
\end{itemize}
|
||
|
|
||
|
\todo{There are settings where the factorization of Corollary~\ref{cor:2} is a
|
||
|
factorization into morphisms of $\cC$-pairs.}
|
||
|
|
||
|
\begin{thm}
|
||
|
Birational projective manifolds $X$ and $Y$ have canonically isomorphic
|
||
|
$\cC$-Albanese varieties.
|
||
|
\end{thm}
|
||
|
\begin{proof}
|
||
|
\todo{PENDING}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{thm}
|
||
|
Let $X$ be a projective manifold and let $x \in X$ be any point. Let $\mu : X
|
||
|
\to Y$ be an MRC fibration of $X$, where $Y$ is again a projective manifold.
|
||
|
Then, the $\cC$-pairs $\Alb_x(X,0)$ and $\Alb_{\mu(x)}(Y,0)$ are naturally
|
||
|
isomorphic.
|
||
|
\end{thm}
|
||
|
\begin{proof}
|
||
|
\todo{PENDING}
|
||
|
\end{proof}
|
||
|
|
||
|
|
||
|
\section{Examples}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item \todo{Discuss the Stoppino-example: general type, simply-connected,
|
||
|
augmented irregularity zero, but has a non-trivial $\cC$-Albanse.}
|
||
|
\end{itemize}
|
||
|
|
||
|
|
||
|
\section{The $\cC$-Albanese morphism for special manifolds}
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item \todo{Discuss special surfaces.}
|
||
|
\item \todo{Figure out what we can say for special threefolds.}
|
||
|
\end{itemize}
|
||
|
|
||
|
% !TEX root = orbiAlb1
|