nevanlinna/Nevanlinna/specialFunctions_CircleInte...

385 lines
11 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.MeasureTheory.Integral.Periodic
import Mathlib.MeasureTheory.Integral.CircleIntegral
import Nevanlinna.specialFunctions_Integral_log_sin
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.periodic_integrability
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
-- Lemmas for the circleMap
lemma l₀ {x₁ x₂ : } : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
dsimp [circleMap]
simp
rw [add_mul, Complex.exp_add]
lemma l₁ {x : } : ‖circleMap 0 1 x‖ = 1 := by
rw [Complex.norm_eq_abs, abs_circleMap_zero]
simp
lemma l₂ {x : } : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
calc ‖(circleMap 0 1 x) - a‖
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by
exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
rw [l₁]
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
rw [mul_sub]
_ = ‖(circleMap 0 1 0) - (circleMap 0 1 (-x)) * a‖ := by
rw [l₀]
simp
_ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
congr
dsimp [circleMap]
simp
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ < 1.
lemma int'₀
{a : }
(ha : a ∈ Metric.ball 0 1) :
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - a‖) volume 0 (2 * π) := by
apply Continuous.intervalIntegrable
apply Continuous.log
fun_prop
simp
intro x
by_contra h₁a
rw [← h₁a] at ha
simp at ha
lemma int₀
{a : }
(ha : a ∈ Metric.ball 0 1) :
∫ (x : ) in (0)..2 * π, log ‖circleMap 0 1 x - a‖ = 0 := by
by_cases h₁a : a = 0
· -- case: a = 0
rw [h₁a]
simp
-- case: a ≠ 0
simp_rw [l₂]
have {x : } : log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_neg ((fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖))]
let f₁ := fun w ↦ log ‖1 - circleMap 0 1 w * a‖
have {x : } : log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * π) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_add_right f₁ (2 * π)]
simp
dsimp [f₁]
let ρ := ‖a‖⁻¹
have hρ : 1 < ρ := by
apply one_lt_inv_iff.mpr
constructor
· exact norm_pos_iff'.mpr h₁a
· exact mem_ball_zero_iff.mp ha
let F := fun z ↦ log ‖1 - z * a‖
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
intro x hx
apply logabs_of_holomorphicAt_is_harmonic
apply Differentiable.holomorphicAt
fun_prop
apply sub_ne_zero_of_ne
by_contra h
have : ‖x * a‖ < 1 := by
calc ‖x * a‖
_ = ‖x‖ * ‖a‖ := by exact NormedField.norm_mul' x a
_ < ρ * ‖a‖ := by
apply (mul_lt_mul_right _).2
exact mem_ball_zero_iff.mp hx
exact norm_pos_iff'.mpr h₁a
_ = 1 := by
dsimp [ρ]
apply inv_mul_cancel₀
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
rw [← h] at this
simp at this
let A := harmonic_meanValue ρ 1 zero_lt_one hρ hf
dsimp [F] at A
simp at A
exact A
-- Integral of log ‖circleMap 0 1 x - 1‖
lemma int₁₁ : ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
have t₁ {x : } : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
intro hx
rw [log_mul, log_pow]
rfl
exact Ne.symm (NeZero.ne' 4)
apply pow_ne_zero 2
apply (fun a => Ne.symm (ne_of_lt a))
exact sin_pos_of_mem_Ioo hx
have t₂ : Set.EqOn (fun y ↦ log (4 * sin y ^ 2)) (fun y ↦ log 4 + 2 * log (sin y)) (Set.Ioo 0 π) := by
intro x hx
simp
rw [t₁ hx]
rw [intervalIntegral.integral_congr_volume pi_pos t₂]
rw [intervalIntegral.integral_add]
rw [intervalIntegral.integral_const_mul]
simp
rw [integral_log_sin₂]
have : (4 : ) = 2 * 2 := by norm_num
rw [this, log_mul]
ring
norm_num
norm_num
-- IntervalIntegrable (fun x => log 4) volume 0 π
simp
-- IntervalIntegrable (fun x => 2 * log (sin x)) volume 0 π
apply IntervalIntegrable.const_mul
exact intervalIntegrable_log_sin
lemma logAffineHelper {x : } : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
dsimp [Complex.abs]
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
congr
calc Complex.normSq (circleMap 0 1 x - 1)
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
dsimp [circleMap]
rw [Complex.normSq_apply]
simp
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
ring
_ = 2 - 2 * cos x := by
rw [sin_sq_add_cos_sq]
norm_num
_ = 2 - 2 * cos (2 * (x / 2)) := by
rw [← mul_div_assoc]
congr; norm_num
_ = 4 - 4 * cos (x / 2) ^ 2 := by
rw [cos_two_mul]
ring
_ = 4 * sin (x / 2) ^ 2 := by
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
ring
lemma int'₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - 1‖) volume 0 (2 * π) := by
simp_rw [logAffineHelper]
apply IntervalIntegrable.div_const
rw [← IntervalIntegrable.comp_mul_left_iff (c := 2) (Ne.symm (NeZero.ne' 2))]
simp
have h₁ : Set.EqOn (fun x => log (4 * sin x ^ 2)) (fun x => log 4 + 2 * log (sin x)) (Set.Ioo 0 π) := by
intro x hx
simp [log_mul (Ne.symm (NeZero.ne' 4)), log_pow, ne_of_gt (sin_pos_of_mem_Ioo hx)]
rw [IntervalIntegrable.integral_congr_Ioo pi_nonneg h₁]
apply IntervalIntegrable.add
simp
apply IntervalIntegrable.const_mul
exact intervalIntegrable_log_sin
lemma int''₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖ for arbitrary intervals
∀ (t₁ t₂ : ), IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - 1‖) volume t₁ t₂ := by
intro t₁ t₂
apply periodic_integrability4 (T := 2 * π) (t := 0)
--
have : (fun x => log ‖circleMap 0 1 x - 1‖) = (fun x => log ‖x - 1‖) ∘ (circleMap 0 1) := rfl
rw [this]
apply Function.Periodic.comp
exact periodic_circleMap 0 1
--
exact two_pi_pos
--
rw [zero_add]
exact int'₁
lemma int₁ :
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
simp_rw [logAffineHelper]
simp
have : ∫ (x : ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ) in (0)..π, log (4 * sin x ^ 2) := by
have : 1 = 2 * (2 : )⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
nth_rw 1 [← one_mul (∫ (x : ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
let f := fun y ↦ log (4 * sin y ^ 2)
have {x : } : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
conv =>
left
right
right
arg 1
intro x
rw [this]
rw [intervalIntegral.inv_mul_integral_comp_div 2]
simp
rw [this]
simp
exact int₁₁
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ = 1
lemma int'₂
{a : }
(ha : ‖a‖ = 1) :
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - a‖) volume 0 (2 * π) := by
simp_rw [l₂]
have {x : } : log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
conv =>
arg 1
intro x
rw [this]
rw [IntervalIntegrable.iff_comp_neg]
let f₁ := fun w ↦ log ‖1 - circleMap 0 1 w * a‖
have {x : } : log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * π) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
conv =>
arg 1
intro x
arg 0
intro w
rw [this]
simp
have : 0 = 2 * π - 2 * π := by ring
rw [this]
have : -(2 * π ) = 0 - 2 * π := by ring
rw [this]
apply IntervalIntegrable.comp_add_right _ (2 * π) --f₁ (2 * π)
dsimp [f₁]
have : ∃ ζ, a = circleMap 0 1 ζ := by
apply Set.exists_range_iff.mp
use a
simp
exact ha
obtain ⟨ζ, hζ⟩ := this
rw [hζ]
simp_rw [l₀]
have : 2 * π = (2 * π + ζ) - ζ := by ring
rw [this]
have : 0 = ζ - ζ := by ring
rw [this]
have : (fun w => log (Complex.abs (1 - circleMap 0 1 (w + ζ)))) = fun x ↦ (fun w ↦ log (Complex.abs (1 - circleMap 0 1 (w)))) (x + ζ) := rfl
rw [this]
apply IntervalIntegrable.comp_add_right (f := (fun w ↦ log (Complex.abs (1 - circleMap 0 1 (w))))) _ ζ
have : Function.Periodic (fun x ↦ log (Complex.abs (1 - circleMap 0 1 x))) (2 * π) := by
have : (fun x ↦ log (Complex.abs (1 - circleMap 0 1 x))) = ( (fun x ↦ log (Complex.abs (1 - x))) ∘ (circleMap 0 1) ) := by rfl
rw [this]
apply Function.Periodic.comp
exact periodic_circleMap 0 1
let A := int''₁ (2 * π + ζ) ζ
have {x : } : ‖circleMap 0 1 x - 1‖ = Complex.abs (1 - circleMap 0 1 x) := AbsoluteValue.map_sub Complex.abs (circleMap 0 1 x) 1
simp_rw [this] at A
exact A
lemma int₂
{a : }
(ha : ‖a‖ = 1) :
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - a‖ = 0 := by
simp_rw [l₂]
have {x : } : log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_neg ((fun w ↦ log ‖1 - circleMap 0 1 (w) * a‖))]
let f₁ := fun w ↦ log ‖1 - circleMap 0 1 w * a‖
have {x : } : log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * π) := by
dsimp [f₁]
congr 4
let A := periodic_circleMap 0 1 x
simp at A
exact id (Eq.symm A)
conv =>
left
arg 1
intro x
rw [this]
rw [intervalIntegral.integral_comp_add_right f₁ (2 * π)]
simp
dsimp [f₁]
have : ∃ ζ, a = circleMap 0 1 ζ := by
apply Set.exists_range_iff.mp
use a
simp
exact ha
obtain ⟨ζ, hζ⟩ := this
rw [hζ]
simp_rw [l₀]
rw [intervalIntegral.integral_comp_add_right (f := fun x ↦ log (Complex.abs (1 - circleMap 0 1 (x))))]
have : Function.Periodic (fun x ↦ log (Complex.abs (1 - circleMap 0 1 x))) (2 * π) := by
have : (fun x ↦ log (Complex.abs (1 - circleMap 0 1 x))) = ( (fun x ↦ log (Complex.abs (1 - x))) ∘ (circleMap 0 1) ) := by rfl
rw [this]
apply Function.Periodic.comp
exact periodic_circleMap 0 1
let A := Function.Periodic.intervalIntegral_add_eq this ζ 0
simp at A
simp
rw [add_comm]
rw [A]
have {x : } : log (Complex.abs (1 - circleMap 0 1 x)) = log ‖circleMap 0 1 x - 1‖ := by
rw [← AbsoluteValue.map_neg Complex.abs]
simp
simp_rw [this]
exact int₁
lemma int₃
{a : }
(ha : a ∈ Metric.closedBall 0 1) :
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - a‖ = 0 := by
by_cases h₁a : a ∈ Metric.ball 0 1
· exact int₀ h₁a
· apply int₂
simp at ha
simp at h₁a
simp
linarith