436 lines
11 KiB
Plaintext
436 lines
11 KiB
Plaintext
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.meromorphicOn_integrability
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.stronglyMeromorphic_JensenFormula
|
||
|
||
open Real
|
||
|
||
|
||
-- Lang p. 164
|
||
|
||
theorem MeromorphicOn.restrict
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(r : ℝ) :
|
||
MeromorphicOn f (Metric.closedBall 0 r) := by
|
||
exact fun x a => h₁f x trivial
|
||
|
||
theorem MeromorphicOn.restrict_inv
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(r : ℝ) :
|
||
h₁f.inv.restrict r = (h₁f.restrict r).inv := by
|
||
funext x
|
||
simp
|
||
|
||
|
||
noncomputable def MeromorphicOn.N_zero
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict |r|).divisor z)) * log (r * ‖z‖⁻¹)
|
||
|
||
noncomputable def MeromorphicOn.N_infty
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict |r|).divisor z))) * log (r * ‖z‖⁻¹)
|
||
|
||
|
||
theorem Nevanlinna_counting₁₁
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤)
|
||
(a : ℂ) :
|
||
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||
|
||
funext r
|
||
unfold MeromorphicOn.N_infty
|
||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||
repeat
|
||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||
apply Finset.sum_congr rfl
|
||
intro x hx; simp at hx
|
||
congr 2
|
||
|
||
by_cases h : 0 ≤ (hf.restrict |r|).divisor x
|
||
· simp [h]
|
||
let A := (hf.restrict |r|).divisor_add_const₁ a h
|
||
exact A
|
||
|
||
· simp at h
|
||
have h' : 0 ≤ -((hf.restrict |r|).divisor x) := by
|
||
apply Int.le_neg_of_le_neg
|
||
simp
|
||
exact Int.le_of_lt h
|
||
simp [h']
|
||
clear h'
|
||
|
||
have A := (hf.restrict |r|).divisor_add_const₂ a h
|
||
have A' : 0 ≤ -((MeromorphicOn.add (MeromorphicOn.restrict hf |r|) (MeromorphicOn.const a)).divisor x) := by
|
||
apply Int.le_neg_of_le_neg
|
||
simp
|
||
exact Int.le_of_lt A
|
||
simp [A']
|
||
clear A A'
|
||
|
||
exact (hf.restrict |r|).divisor_add_const₃ a h
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
tauto
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
have : 0 ≤ (hf.restrict |r|).divisor x := by
|
||
rw [hx]
|
||
have G := (hf.restrict |r|).divisor_add_const₁ a this
|
||
clear this
|
||
simp [G]
|
||
|
||
theorem Nevanlinna_counting'₁₁
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤)
|
||
(a : ℂ) :
|
||
(hf.sub (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||
have : (f - fun x => a) = (f + fun x => -a) := by
|
||
funext x
|
||
simp; ring
|
||
have : (hf.sub (MeromorphicOn.const a)).N_infty = (hf.add (MeromorphicOn.const (-a))).N_infty := by
|
||
simp
|
||
rw [this]
|
||
exact Nevanlinna_counting₁₁ hf (-a)
|
||
|
||
|
||
theorem Nevanlinna_counting₀
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
hf.inv.N_infty = hf.N_zero := by
|
||
|
||
funext r
|
||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||
repeat
|
||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||
apply Finset.sum_congr rfl
|
||
intro x hx
|
||
congr
|
||
let B := hf.restrict_inv |r|
|
||
rw [MeromorphicOn.divisor_inv]
|
||
simp
|
||
--
|
||
exact fun x a => hf x trivial
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
tauto
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx h₁x
|
||
|
||
rw [MeromorphicOn.divisor_inv (hf.restrict |r|)] at h₁x
|
||
simp at h₁x
|
||
rw [hx] at h₁x
|
||
tauto
|
||
|
||
|
||
theorem Nevanlinna_counting
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict |r|).divisor z) * log (r * ‖z‖⁻¹) := by
|
||
|
||
funext r
|
||
simp only [Pi.sub_apply]
|
||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||
|
||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||
repeat
|
||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||
rw [← Finset.sum_sub_distrib]
|
||
simp_rw [← sub_mul]
|
||
congr
|
||
funext x
|
||
congr
|
||
by_cases h : 0 ≤ (hf.restrict |r|).divisor x
|
||
· simp [h]
|
||
· have h' : 0 ≤ -((hf.restrict |r|).divisor x) := by
|
||
simp at h
|
||
apply Int.le_neg_of_le_neg
|
||
simp
|
||
exact Int.le_of_lt h
|
||
simp at h
|
||
simp [h']
|
||
linarith
|
||
--
|
||
repeat
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
tauto
|
||
|
||
|
||
--
|
||
|
||
noncomputable def MeromorphicOn.m_infty
|
||
{f : ℂ → ℂ}
|
||
(_ : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
||
|
||
|
||
theorem Nevanlinna_proximity
|
||
{f : ℂ → ℂ}
|
||
{r : ℝ}
|
||
(h₁f : MeromorphicOn f ⊤) :
|
||
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
|
||
|
||
unfold MeromorphicOn.m_infty
|
||
rw [← mul_sub]; congr
|
||
rw [← intervalIntegral.integral_sub]; congr
|
||
funext x
|
||
simp_rw [loglogpos]; congr
|
||
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
intro z hx
|
||
exact h₁f z trivial
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
|
||
|
||
|
||
noncomputable def MeromorphicOn.T_infty
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
hf.m_infty + hf.N_infty
|
||
|
||
|
||
theorem Nevanlinna_firstMain₁
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(h₂f : StronglyMeromorphicAt f 0)
|
||
(h₃f : f 0 ≠ 0) :
|
||
(fun _ ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
||
|
||
rw [add_eq_of_eq_sub]
|
||
unfold MeromorphicOn.T_infty
|
||
|
||
have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C - (D - B) := by
|
||
ring
|
||
rw [this]
|
||
clear this
|
||
|
||
rw [Nevanlinna_counting₀ h₁f]
|
||
rw [Nevanlinna_counting h₁f]
|
||
funext r
|
||
simp
|
||
rw [← Nevanlinna_proximity h₁f]
|
||
|
||
by_cases h₁r : r = 0
|
||
rw [h₁r]
|
||
simp
|
||
have : π⁻¹ * 2⁻¹ * (2 * π * log (Complex.abs (f 0))) = (π⁻¹ * (2⁻¹ * 2) * π) * log (Complex.abs (f 0)) := by
|
||
ring
|
||
rw [this]
|
||
clear this
|
||
simp [pi_ne_zero]
|
||
|
||
by_cases hr : 0 < r
|
||
let A := jensen hr f (h₁f.restrict r) h₂f h₃f
|
||
simp at A
|
||
rw [A]
|
||
clear A
|
||
simp
|
||
have {A B : ℝ} : -A + B = B - A := by ring
|
||
rw [this]
|
||
have : |r| = r := by
|
||
rw [← abs_of_pos hr]
|
||
simp
|
||
rw [this]
|
||
|
||
-- case 0 < -r
|
||
have h₂r : 0 < -r := by
|
||
simp [h₁r, hr]
|
||
by_contra hCon
|
||
-- Assume ¬(r < 0), which means r >= 0
|
||
push_neg at hCon
|
||
-- Now h is r ≥ 0, so we split into cases
|
||
rcases lt_or_eq_of_le hCon with h|h
|
||
· tauto
|
||
· tauto
|
||
let A := jensen h₂r f (h₁f.restrict (-r)) h₂f h₃f
|
||
simp at A
|
||
rw [A]
|
||
clear A
|
||
simp
|
||
have {A B : ℝ} : -A + B = B - A := by ring
|
||
rw [this]
|
||
|
||
congr 1
|
||
congr 1
|
||
let A := integrabl_congr_negRadius (f := (fun z ↦ log (Complex.abs (f z)))) (r := r)
|
||
rw [A]
|
||
have : |r| = -r := by
|
||
rw [← abs_of_pos h₂r]
|
||
simp
|
||
rw [this]
|
||
|
||
|
||
theorem Nevanlinna_firstMain₂
|
||
{f : ℂ → ℂ}
|
||
{a : ℂ}
|
||
{r : ℝ}
|
||
(h₁f : MeromorphicOn f ⊤) :
|
||
|(h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r)| ≤ logpos ‖a‖ + log 2 := by
|
||
|
||
-- See Lang, p. 168
|
||
|
||
have : (h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r) = (h₁f.m_infty r) - ((h₁f.sub (MeromorphicOn.const a)).m_infty r) := by
|
||
unfold MeromorphicOn.T_infty
|
||
rw [Nevanlinna_counting'₁₁ h₁f a]
|
||
simp
|
||
rw [this]
|
||
clear this
|
||
|
||
unfold MeromorphicOn.m_infty
|
||
rw [←mul_sub]
|
||
rw [←intervalIntegral.integral_sub]
|
||
|
||
let g := f - (fun _ ↦ a)
|
||
|
||
have t₀₀ (x : ℝ) : log⁺ ‖f (circleMap 0 r x)‖ ≤ log⁺ ‖g (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||
unfold g
|
||
simp only [Pi.sub_apply]
|
||
|
||
calc log⁺ ‖f (circleMap 0 r x)‖
|
||
_ = log⁺ ‖g (circleMap 0 r x) + a‖ := by
|
||
unfold g
|
||
simp
|
||
_ ≤ log⁺ (‖g (circleMap 0 r x)‖ + ‖a‖) := by
|
||
apply monoOn_logpos
|
||
refine Set.mem_Ici.mpr ?_
|
||
apply norm_nonneg
|
||
refine Set.mem_Ici.mpr ?_
|
||
apply add_nonneg
|
||
apply norm_nonneg
|
||
apply norm_nonneg
|
||
--
|
||
apply norm_add_le
|
||
_ ≤ log⁺ ‖g (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||
apply logpos_add_le_add_logpos_add_log2
|
||
|
||
have t₁₀ (x : ℝ) : log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||
rw [sub_le_iff_le_add]
|
||
nth_rw 1 [add_comm]
|
||
rw [←add_assoc]
|
||
apply t₀₀ x
|
||
clear t₀₀
|
||
|
||
have t₀₁ (x : ℝ) : log⁺ ‖g (circleMap 0 r x)‖ ≤ log⁺ ‖f (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||
unfold g
|
||
simp only [Pi.sub_apply]
|
||
|
||
calc log⁺ ‖g (circleMap 0 r x)‖
|
||
_ = log⁺ ‖f (circleMap 0 r x) - a‖ := by
|
||
unfold g
|
||
simp
|
||
_ ≤ log⁺ (‖f (circleMap 0 r x)‖ + ‖a‖) := by
|
||
apply monoOn_logpos
|
||
refine Set.mem_Ici.mpr ?_
|
||
apply norm_nonneg
|
||
refine Set.mem_Ici.mpr ?_
|
||
apply add_nonneg
|
||
apply norm_nonneg
|
||
apply norm_nonneg
|
||
--
|
||
apply norm_sub_le
|
||
_ ≤ log⁺ ‖f (circleMap 0 r x)‖ + log⁺ ‖a‖ + log 2 := by
|
||
apply logpos_add_le_add_logpos_add_log2
|
||
|
||
have t₁₁ (x : ℝ) : log⁺ ‖g (circleMap 0 r x)‖ - log⁺ ‖f (circleMap 0 r x)‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||
rw [sub_le_iff_le_add]
|
||
nth_rw 1 [add_comm]
|
||
rw [←add_assoc]
|
||
apply t₀₁ x
|
||
clear t₀₁
|
||
|
||
have t₂ {x : ℝ} : ‖log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ log⁺ ‖a‖ + log 2 := by
|
||
by_cases h : 0 ≤ log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖
|
||
· rw [norm_of_nonneg h]
|
||
exact t₁₀ x
|
||
· rw [norm_of_nonpos (by linarith)]
|
||
rw [neg_sub]
|
||
exact t₁₁ x
|
||
clear t₁₀ t₁₁
|
||
|
||
have s₀ : ‖∫ (x : ℝ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖‖ ≤ (log⁺ ‖a‖ + log 2) * |2 * π - 0| := by
|
||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||
intro x hx
|
||
exact t₂
|
||
clear t₂
|
||
simp only [norm_eq_abs, sub_zero] at s₀
|
||
rw [abs_mul]
|
||
|
||
have s₁ : |(2 * π)⁻¹| * |∫ (x : ℝ) in (0)..(2 * π), log⁺ ‖f (circleMap 0 r x)‖ - log⁺ ‖g (circleMap 0 r x)‖| ≤ |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) := by
|
||
apply mul_le_mul_of_nonneg_left
|
||
exact s₀
|
||
apply abs_nonneg
|
||
have : |(2 * π)⁻¹| * ((log⁺ ‖a‖ + log 2) * |2 * π|) = log⁺ ‖a‖ + log 2 := by
|
||
rw [mul_comm, mul_assoc]
|
||
have : |2 * π| * |(2 * π)⁻¹| = 1 := by
|
||
rw [abs_mul, abs_inv, abs_mul]
|
||
rw [abs_of_pos pi_pos]
|
||
simp [pi_ne_zero]
|
||
ring_nf
|
||
simp [pi_ne_zero]
|
||
rw [this]
|
||
simp
|
||
rw [this] at s₁
|
||
assumption
|
||
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
exact fun x a => h₁f x trivial
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
apply MeromorphicOn.sub
|
||
exact fun x a => h₁f x trivial
|
||
apply MeromorphicOn.const a
|
||
|
||
|
||
open Asymptotics
|
||
|
||
|
||
theorem Nevanlinna_firstMain'₂
|
||
{f : ℂ → ℂ}
|
||
{a : ℂ}
|
||
(h₁f : MeromorphicOn f ⊤) :
|
||
|(h₁f.T_infty) - ((h₁f.sub (MeromorphicOn.const a)).T_infty)| =O[Filter.atTop] (1 : ℝ → ℝ) := by
|
||
|
||
rw [Asymptotics.isBigO_iff']
|
||
use logpos ‖a‖ + log 2
|
||
constructor
|
||
· apply add_pos_of_nonneg_of_pos
|
||
apply logpos_nonneg
|
||
apply log_pos one_lt_two
|
||
· rw [Filter.eventually_atTop]
|
||
use 0
|
||
intro b hb
|
||
simp only [Pi.abs_apply, Pi.sub_apply, norm_eq_abs, abs_abs, Pi.one_apply,
|
||
norm_one, mul_one]
|
||
apply Nevanlinna_firstMain₂
|