212 lines
6.3 KiB
Plaintext
212 lines
6.3 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
|
||
open Topology
|
||
|
||
|
||
/- Strongly MeromorphicAt -/
|
||
def StronglyMeromorphicAt
|
||
(f : ℂ → ℂ)
|
||
(z₀ : ℂ) :=
|
||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||
|
||
|
||
/- Strongly MeromorphicAt is Meromorphic -/
|
||
theorem StronglyMeromorphicAt.meromorphicAt
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : StronglyMeromorphicAt f z₀) :
|
||
MeromorphicAt f z₀ := by
|
||
rcases hf with h|h
|
||
· use 0; simp
|
||
rw [analyticAt_congr h]
|
||
exact analyticAt_const
|
||
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
|
||
rw [meromorphicAt_congr' h₃g]
|
||
apply MeromorphicAt.smul
|
||
apply MeromorphicAt.zpow
|
||
apply MeromorphicAt.sub
|
||
apply MeromorphicAt.id
|
||
apply MeromorphicAt.const
|
||
exact AnalyticAt.meromorphicAt h₁g
|
||
|
||
|
||
/- Strongly MeromorphicAt of non-negative order is analytic -/
|
||
theorem StronglyMeromorphicAt.analytic
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁f : StronglyMeromorphicAt f z₀)
|
||
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
||
AnalyticAt ℂ f z₀ := by
|
||
let h₁f' := h₁f
|
||
rcases h₁f' with h|h
|
||
· rw [analyticAt_congr h]
|
||
exact analyticAt_const
|
||
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
||
rw [analyticAt_congr h₃g]
|
||
|
||
have : h₁f.meromorphicAt.order = n := by
|
||
rw [MeromorphicAt.order_eq_int_iff]
|
||
use g
|
||
constructor
|
||
· exact h₁g
|
||
· constructor
|
||
· exact h₂g
|
||
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
||
rw [this] at h₂f
|
||
apply AnalyticAt.smul
|
||
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
|
||
apply AnalyticAt.pow
|
||
apply AnalyticAt.sub
|
||
apply analyticAt_id -- Warning: want apply AnalyticAt.id
|
||
apply analyticAt_const -- Warning: want AnalyticAt.const
|
||
exact h₁g
|
||
|
||
|
||
/- Analytic functions are strongly meromorphic -/
|
||
theorem AnalyticAt.stronglyMeromorphicAt
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁f : AnalyticAt ℂ f z₀) :
|
||
StronglyMeromorphicAt f z₀ := by
|
||
by_cases h₂f : h₁f.order = ⊤
|
||
· rw [AnalyticAt.order_eq_top_iff] at h₂f
|
||
tauto
|
||
· have : h₁f.order ≠ ⊤ := h₂f
|
||
rw [← ENat.coe_toNat_eq_self] at this
|
||
rw [eq_comm, AnalyticAt.order_eq_nat_iff] at this
|
||
right
|
||
use h₁f.order.toNat
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
|
||
use g
|
||
tauto
|
||
|
||
|
||
/- Make strongly MeromorphicAt -/
|
||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
ℂ → ℂ := by
|
||
intro z
|
||
by_cases z = z₀
|
||
· by_cases h₁f : hf.order = (0 : ℤ)
|
||
· rw [hf.order_eq_int_iff] at h₁f
|
||
exact (Classical.choose h₁f) z₀
|
||
· exact 0
|
||
· exact f z
|
||
|
||
lemma m₁
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
|
||
intro z hz
|
||
unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||
simp [hz]
|
||
|
||
lemma m₂
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
|
||
apply eventually_nhdsWithin_of_forall
|
||
exact fun x a => m₁ hf x a
|
||
|
||
|
||
lemma Mnhds
|
||
{f g : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
|
||
(h₂ : f z₀ = g z₀) :
|
||
f =ᶠ[𝓝 z₀] g := by
|
||
apply eventually_nhds_iff.2
|
||
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ)
|
||
· exact h₁t y hy h₂y
|
||
· simp at h₂y
|
||
rwa [h₂y]
|
||
· exact h₂t
|
||
|
||
|
||
theorem localIdentity
|
||
{f g : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀)
|
||
(hg : AnalyticAt ℂ g z₀) :
|
||
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
|
||
intro h
|
||
let Δ := f - g
|
||
have : AnalyticAt ℂ Δ z₀ := AnalyticAt.sub hf hg
|
||
have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by
|
||
exact Filter.eventuallyEq_iff_sub.mp h
|
||
|
||
have : Δ =ᶠ[𝓝 z₀] 0 := by
|
||
rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h
|
||
· exact h
|
||
· have := Filter.EventuallyEq.eventually t₁
|
||
let A := Filter.eventually_and.2 ⟨this, h⟩
|
||
let _ := Filter.Eventually.exists A
|
||
tauto
|
||
exact Filter.eventuallyEq_iff_sub.mpr this
|
||
|
||
|
||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
|
||
|
||
by_cases h₂f : hf.order = ⊤
|
||
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
|
||
apply Mnhds
|
||
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
||
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
|
||
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||
simp [h₂f]
|
||
|
||
apply AnalyticAt.stronglyMeromorphicAt
|
||
rw [analyticAt_congr this]
|
||
apply analyticAt_const
|
||
· let n := hf.order.untop h₂f
|
||
have : hf.order = n := by
|
||
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
|
||
rw [hf.order_eq_int_iff] at this
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
|
||
right
|
||
use n
|
||
use g
|
||
constructor
|
||
· assumption
|
||
· constructor
|
||
· assumption
|
||
· apply Mnhds
|
||
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
|
||
exact h₃g
|
||
· unfold MeromorphicAt.makeStronglyMeromorphicAt
|
||
simp
|
||
by_cases h₃f : hf.order = (0 : ℤ)
|
||
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
|
||
simp [h₃f]
|
||
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
|
||
simp at h₃G
|
||
have hn : n = 0 := Eq.symm ((fun {α} {a} {b} h => (WithTop.eq_untop_iff h).mpr) h₂f (id (Eq.symm h₃f)))
|
||
rw [hn]
|
||
rw [hn] at h₃g; simp at h₃g
|
||
simp
|
||
have : g =ᶠ[𝓝 z₀] (Classical.choose h₄f) := by
|
||
apply localIdentity h₁g h₁G
|
||
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₃g) h₃G
|
||
rw [Filter.EventuallyEq.eq_of_nhds this]
|
||
· have : hf.order ≠ 0 := h₃f
|
||
simp [this]
|
||
left
|
||
apply zero_zpow n
|
||
dsimp [n]
|
||
rwa [WithTop.untop_eq_iff h₂f]
|