nevanlinna/Nevanlinna/mathlibAddOn.lean
2024-07-31 09:40:35 +02:00

36 lines
1.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
variable {f f₀ f₁ g : E → F}
variable {f' f₀' f₁' g' : E →L[𝕜] F}
variable (e : E →L[𝕜] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
-- import Mathlib.Analysis.Calculus.FDeriv.Add
@[fun_prop]
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
Differentiable 𝕜 (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact Differentiable.const_smul h c
-- Mathlib.Analysis.Calculus.ContDiff.Basic
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
ContDiff 𝕜 n (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf