nevanlinna/Nevanlinna/holomorphic_JensenFormula2.lean
2024-08-13 08:42:47 +02:00

42 lines
1.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.CauchyIntegral
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Mathlib.Analysis.Analytic.IsolatedZeros
lemma xx
{f : }
{S : Set }
(h₁S : IsPreconnected S)
(h₂S : IsCompact S)
(hf : ∀ s ∈ S, AnalyticAt f s) :
∃ o : , ∃ F : , ∀ z ∈ S, (AnalyticAt F z) ∧ (F z ≠ 0) ∧ (f z = F z * ∏ᶠ s ∈ S, (z - s) ^ (o s)) := by
let o : := by
intro z
if hz : z ∈ S then
let A := hf z hz
let B := A.order
exact (A.order : )
else
exact 0
sorry
theorem jensen_case_R_eq_one'
(f : )
(h₁f : Differentiable f)
(h₂f : f 0 ≠ 0)
(S : Finset )
(a : S → )
(ha : ∀ s, a s ∈ Metric.ball 0 1)
(F : )
(h₁F : Differentiable F)
(h₂F : ∀ z, F z ≠ 0)
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
:
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
sorry