nevanlinna/Nevanlinna/holomorphicAt.lean
Stefan Kebekus 9a7c8b82a4 working
2024-07-31 15:59:43 +02:00

163 lines
3.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.TaylorSeries
import Nevanlinna.cauchyRiemann
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace G]
def HolomorphicAt (f : E → F) (x : E) : Prop :=
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt f z
theorem HolomorphicAt_iff
{f : E → F}
{x : E} :
HolomorphicAt f x ↔ ∃ s :
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt f z) := by
constructor
· intro hf
obtain ⟨t, h₁t, h₂t⟩ := hf
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
use s
constructor
· assumption
· constructor
· assumption
· intro z hz
exact h₂t z (h₁s hz)
· intro hyp
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
use s
constructor
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
· assumption
theorem Differentiable.holomorphicAt
{f : E → F}
(hf : Differentiable f)
{x : E} :
HolomorphicAt f x := by
apply HolomorphicAt_iff.2
use Set.univ
constructor
· exact isOpen_univ
· constructor
· exact trivial
· intro z _
exact hf z
theorem HolomorphicAt_isOpen
(f : E → F) :
IsOpen { x : E | HolomorphicAt f x } := by
rw [← subset_interior_iff_isOpen]
intro x hx
simp at hx
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
use s
constructor
· simp
constructor
· exact h₁s
· intro x hx
simp
use s
constructor
· exact IsOpen.mem_nhds h₁s hx
· exact h₃s
· exact h₂s
theorem HolomorphicAt_comp
{g : E → F}
{f : F → G}
{z : E}
(hf : HolomorphicAt f (g z))
(hg : HolomorphicAt g z) :
HolomorphicAt (f ∘ g) z := by
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
use UE ∩ g⁻¹' UF
constructor
· simp
constructor
· assumption
· apply ContinuousAt.preimage_mem_nhds
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
assumption
· intro x hx
apply DifferentiableAt.comp
apply h₂UF
exact hx.2
apply h₂UE
exact hx.1
theorem HolomorphicAt_neg
{f : E → F}
{z : E}
(hf : HolomorphicAt f z) :
HolomorphicAt (-f) z := by
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
use UF
constructor
· assumption
· intro z hz
apply differentiableAt_neg_iff.mp
simp
exact h₂UF z hz
theorem HolomorphicAt.contDiffAt
[CompleteSpace F]
{f : → F}
{z : }
{n : }
(hf : HolomorphicAt f z) :
ContDiffAt n f z := by
let t := {x | HolomorphicAt f x}
have ht : IsOpen t := HolomorphicAt_isOpen f
have hz : z ∈ t := by exact hf
-- ContDiffAt _ f z
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
suffices h : ContDiffOn n f t from by
apply ContDiffOn.restrict_scalars h
apply DifferentiableOn.contDiffOn _ ht
intro w hw
apply DifferentiableAt.differentiableWithinAt
-- DifferentiableAt f w
let hfw : HolomorphicAt f w := hw
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hfw
exact h₃s w h₂s
theorem HolomorphicAt.differentiableAt
{f : → F}
{z : }
(hf : HolomorphicAt f z) :
DifferentiableAt f z := by
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
exact h₃s z h₂s
theorem HolomorphicAt.CauchyRiemannAt
{f : → F}
{z : }
(h : HolomorphicAt f z) :
partialDeriv Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv 1 f := by
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
apply Filter.eventuallyEq_iff_exists_mem.2
use s
constructor
· exact IsOpen.mem_nhds h₁s hz
· intro w hw
let h := h₂f w hw
unfold partialDeriv
apply CauchyRiemann₅ h