443 lines
13 KiB
Plaintext
443 lines
13 KiB
Plaintext
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||
import Nevanlinna.stronglyMeromorphicOn_eliminate
|
||
|
||
open Real
|
||
|
||
lemma jensen₀
|
||
{R : ℝ}
|
||
(hR : 0 < R)
|
||
(f : ℂ → ℂ)
|
||
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
|
||
(h₂f : f 0 ≠ 0) :
|
||
∃ F : ℂ → ℂ,
|
||
AnalyticOnNhd ℂ F (Metric.closedBall (0 : ℂ) R)
|
||
∧ (∀ (u : (Metric.closedBall (0 : ℂ) R)), F u ≠ 0)
|
||
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall (0 : ℂ) R)] (fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) := by
|
||
|
||
have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by
|
||
constructor
|
||
· apply Metric.nonempty_closedBall.mpr
|
||
exact le_of_lt hR
|
||
· exact (convex_closedBall (0 : ℂ) R).isPreconnected
|
||
|
||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := isCompact_closedBall (0 : ℂ) R
|
||
|
||
|
||
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f (by use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩)
|
||
|
||
use F
|
||
constructor
|
||
· exact h₂F
|
||
· constructor
|
||
· exact fun u ↦ h₃F u
|
||
· rw [Filter.eventuallyEq_iff_exists_mem]
|
||
use {z | f z ≠ 0}
|
||
constructor
|
||
· sorry
|
||
· intro z hz
|
||
simp at hz
|
||
nth_rw 1 [h₄F]
|
||
simp only [Pi.mul_apply, norm_mul]
|
||
|
||
|
||
sorry
|
||
|
||
|
||
theorem jensen
|
||
{R : ℝ}
|
||
(hR : 0 < R)
|
||
(f : ℂ → ℂ)
|
||
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
|
||
(h₂f : f 0 ≠ 0) :
|
||
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
|
||
|
||
have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by
|
||
constructor
|
||
· apply Metric.nonempty_closedBall.mpr
|
||
exact le_of_lt hR
|
||
· exact (convex_closedBall (0 : ℂ) R).isPreconnected
|
||
|
||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) :=
|
||
isCompact_closedBall 0 R
|
||
|
||
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
||
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
||
|
||
have h'₁f : StronglyMeromorphicAt f 0 := by
|
||
apply h₁f
|
||
simp
|
||
exact le_of_lt hR
|
||
|
||
have h''₂f : h'₁f.meromorphicAt.order = 0 := by
|
||
rwa [h'₁f.order_eq_zero_iff]
|
||
|
||
have h'''₂f : h₁f.meromorphicOn.divisor 0 = 0 := by
|
||
unfold MeromorphicOn.divisor
|
||
simp
|
||
tauto
|
||
|
||
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||
|
||
have h'₃f : ∀ s ∈ h₃f.toFinset, s ≠ 0 := by
|
||
by_contra hCon
|
||
push_neg at hCon
|
||
obtain ⟨s, h₁s, h₂s⟩ := hCon
|
||
rw [h₂s] at h₁s
|
||
simp at h₁s
|
||
tauto
|
||
|
||
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
simp
|
||
rw [finsum_eq_sum_of_support_subset _ h₄f]
|
||
|
||
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f h'₂f
|
||
|
||
have h₁F : Function.mulSupport (fun u ↦ fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) ⊆ h₃f.toFinset := by
|
||
intro u
|
||
contrapose
|
||
simp
|
||
intro hu
|
||
rw [hu]
|
||
simp
|
||
exact rfl
|
||
rw [finprod_eq_prod_of_mulSupport_subset _ h₁F] at h₄F
|
||
|
||
let G := fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖
|
||
|
||
have h₁G {z : ℂ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) ⊆ h₃f.toFinset := by
|
||
intro s
|
||
contrapose
|
||
simp
|
||
intro hs
|
||
rw [hs]
|
||
simp
|
||
|
||
have decompose_f : ∀ z ∈ Metric.closedBall (0 : ℂ) R, f z ≠ 0 → log ‖f z‖ = G z := by
|
||
intro z h₁z h₂z
|
||
|
||
rw [h₄F]
|
||
simp only [Pi.mul_apply, norm_mul]
|
||
simp only [Finset.prod_apply, norm_prod, norm_zpow]
|
||
rw [Real.log_mul]
|
||
rw [Real.log_prod]
|
||
simp_rw [Real.log_zpow]
|
||
dsimp only [G]
|
||
rw [finsum_eq_sum_of_support_subset _ h₁G]
|
||
--
|
||
intro x hx
|
||
have : z ≠ x := by
|
||
by_contra hCon
|
||
rw [← hCon] at hx
|
||
simp at hx
|
||
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||
unfold MeromorphicOn.divisor at hx
|
||
simp [h₁z] at hx
|
||
tauto
|
||
apply zpow_ne_zero
|
||
simpa
|
||
-- Complex.abs (F z) ≠ 0
|
||
simp
|
||
exact h₃F ⟨z, h₁z⟩
|
||
--
|
||
rw [Finset.prod_ne_zero_iff]
|
||
intro x hx
|
||
have : z ≠ x := by
|
||
by_contra hCon
|
||
rw [← hCon] at hx
|
||
simp at hx
|
||
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||
unfold MeromorphicOn.divisor at hx
|
||
simp [h₁z] at hx
|
||
tauto
|
||
apply zpow_ne_zero
|
||
simpa
|
||
|
||
|
||
have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 R x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x) := by
|
||
|
||
rw [intervalIntegral.integral_congr_ae]
|
||
rw [MeasureTheory.ae_iff]
|
||
apply Set.Countable.measure_zero
|
||
simp
|
||
|
||
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 R a)‖ = G (circleMap 0 R a)}
|
||
⊆ (circleMap 0 R)⁻¹' (h₃f.toFinset) := by
|
||
intro a ha
|
||
simp at ha
|
||
simp
|
||
by_contra C
|
||
have t₀ : (circleMap 0 R a) ∈ Metric.closedBall 0 R := by
|
||
apply circleMap_mem_closedBall
|
||
exact le_of_lt hR
|
||
have t₁ : f (circleMap 0 R a) ≠ 0 := by
|
||
let A := h₁f (circleMap 0 R a) t₀
|
||
rw [← A.order_eq_zero_iff]
|
||
unfold MeromorphicOn.divisor at C
|
||
simp [t₀] at C
|
||
rcases C with C₁|C₂
|
||
· assumption
|
||
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
|
||
let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩
|
||
rw [C₂] at C
|
||
have : ∃ u : (Metric.closedBall (0 : ℂ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||
use ⟨(0 : ℂ), (by simp; exact le_of_lt hR)⟩
|
||
let H := h₁f 0 (by simp; exact le_of_lt hR)
|
||
let K := H.order_eq_zero_iff.2 h₂f
|
||
rw [K]
|
||
simp
|
||
let D := C this
|
||
tauto
|
||
exact ha.2 (decompose_f (circleMap 0 R a) t₀ t₁)
|
||
|
||
apply Set.Countable.mono t₀
|
||
apply Set.Countable.preimage_circleMap
|
||
apply Set.Finite.countable
|
||
exact Finset.finite_toSet h₃f.toFinset
|
||
--
|
||
exact Ne.symm (ne_of_lt hR)
|
||
|
||
|
||
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x)
|
||
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 R x))))
|
||
+ ∑ᶠ x, (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - ↑x)) := by
|
||
dsimp [G]
|
||
|
||
rw [intervalIntegral.integral_add]
|
||
congr
|
||
have t₀ {x : ℝ} : Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (Complex.abs (circleMap 0 R x - s))) ⊆ h₃f.toFinset := by
|
||
intro s hs
|
||
simp at hs
|
||
simp [hs.1]
|
||
conv =>
|
||
left
|
||
arg 1
|
||
intro x
|
||
rw [finsum_eq_sum_of_support_subset _ t₀]
|
||
rw [intervalIntegral.integral_finset_sum]
|
||
let G' := fun x ↦ ((h₁f.meromorphicOn.divisor x) : ℂ) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))
|
||
have t₁ : (Function.support fun x ↦ (h₁f.meromorphicOn.divisor x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 R x_1 - x))) ⊆ h₃f.toFinset := by
|
||
simp
|
||
intro s
|
||
contrapose!
|
||
simp
|
||
tauto
|
||
conv =>
|
||
right
|
||
rw [finsum_eq_sum_of_support_subset _ t₁]
|
||
simp
|
||
|
||
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
||
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||
intro i _
|
||
apply IntervalIntegrable.const_mul
|
||
--simp at this
|
||
by_cases h₂i : ‖i‖ = R
|
||
-- case pos
|
||
sorry
|
||
--exact int'₂ h₂i
|
||
-- case neg
|
||
apply Continuous.intervalIntegrable
|
||
apply continuous_iff_continuousAt.2
|
||
intro x
|
||
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
|
||
rfl
|
||
rw [this]
|
||
apply ContinuousAt.comp
|
||
apply Real.continuousAt_log
|
||
simp
|
||
|
||
by_contra ha'
|
||
conv at h₂i =>
|
||
arg 1
|
||
rw [← ha']
|
||
rw [Complex.norm_eq_abs]
|
||
rw [abs_circleMap_zero R x]
|
||
simp
|
||
linarith
|
||
--
|
||
apply ContinuousAt.comp
|
||
apply Complex.continuous_abs.continuousAt
|
||
fun_prop
|
||
-- IntervalIntegrable (fun x => log (Complex.abs (F (circleMap 0 1 x)))) MeasureTheory.volume 0 (2 * π)
|
||
apply Continuous.intervalIntegrable
|
||
apply continuous_iff_continuousAt.2
|
||
intro x
|
||
have : (fun x => log (Complex.abs (F (circleMap 0 R x)))) = log ∘ Complex.abs ∘ F ∘ (fun x ↦ circleMap 0 R x) :=
|
||
rfl
|
||
rw [this]
|
||
apply ContinuousAt.comp
|
||
apply Real.continuousAt_log
|
||
simp
|
||
have : (circleMap 0 R x) ∈ (Metric.closedBall 0 R) := by
|
||
simp
|
||
rw [abs_le]
|
||
simp [hR]
|
||
exact le_of_lt hR
|
||
exact h₃F ⟨(circleMap 0 R x), this⟩
|
||
|
||
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
||
apply ContinuousAt.comp
|
||
apply Complex.continuous_abs.continuousAt
|
||
apply ContinuousAt.comp
|
||
apply DifferentiableAt.continuousAt (𝕜 := ℂ)
|
||
apply AnalyticAt.differentiableAt
|
||
apply h₂F (circleMap 0 R x)
|
||
simp; rw [abs_le]; simp [hR]; exact le_of_lt hR
|
||
-- ContinuousAt (fun x => circleMap 0 1 x) x
|
||
apply Continuous.continuousAt
|
||
apply continuous_circleMap
|
||
-- IntervalIntegrable (fun x => ∑ᶠ (s : ℂ), ↑(↑⋯.divisor s) * log (Complex.abs (circleMap 0 1 x - s))) MeasureTheory.volume 0 (2 * π)
|
||
--simp? at h₁G
|
||
have h₁G' {z : ℂ} : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * log (Complex.abs (z - s))) ⊆ ↑h₃f.toFinset := by
|
||
exact h₁G
|
||
conv =>
|
||
arg 1
|
||
intro z
|
||
rw [finsum_eq_sum_of_support_subset _ h₁G']
|
||
conv =>
|
||
arg 1
|
||
rw [← Finset.sum_fn]
|
||
apply IntervalIntegrable.sum
|
||
intro i _
|
||
apply IntervalIntegrable.const_mul
|
||
--have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2
|
||
--simp at this
|
||
by_cases h₂i : ‖i‖ = R
|
||
-- case pos
|
||
--exact int'₂ h₂i
|
||
sorry
|
||
-- case neg
|
||
--have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||
apply Continuous.intervalIntegrable
|
||
apply continuous_iff_continuousAt.2
|
||
intro x
|
||
have : (fun x => log (Complex.abs (circleMap 0 R x - ↑i))) = log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 R x - ↑i) :=
|
||
rfl
|
||
rw [this]
|
||
apply ContinuousAt.comp
|
||
apply Real.continuousAt_log
|
||
simp
|
||
|
||
by_contra ha'
|
||
conv at h₂i =>
|
||
arg 1
|
||
rw [← ha']
|
||
rw [Complex.norm_eq_abs]
|
||
rw [abs_circleMap_zero R x]
|
||
simp
|
||
linarith
|
||
apply ContinuousAt.comp
|
||
apply Complex.continuous_abs.continuousAt
|
||
fun_prop
|
||
|
||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, log ‖F (circleMap 0 R x)‖) = 2 * Real.pi * log ‖F 0‖ := by
|
||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||
have t₀ : ∀ z ∈ Metric.closedBall 0 R, HarmonicAt logAbsF z := by
|
||
intro z hz
|
||
apply logabs_of_holomorphicAt_is_harmonic
|
||
exact AnalyticAt.holomorphicAt (h₂F z hz)
|
||
exact h₃F ⟨z, hz⟩
|
||
|
||
apply harmonic_meanValue₁ R hR t₀
|
||
|
||
|
||
simp_rw [← Complex.norm_eq_abs] at decompose_int_G
|
||
rw [t₁] at decompose_int_G
|
||
|
||
|
||
have h₁G' : (Function.support fun s => (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖) ⊆ ↑h₃f.toFinset := by
|
||
intro s hs
|
||
simp at hs
|
||
simp [hs.1]
|
||
rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G
|
||
have : ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * ∫ (x_1 : ℝ) in (0)..(2 * π), log ‖circleMap 0 R x_1 - s‖ = ∑ s ∈ h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (2 * π) * log R := by
|
||
apply Finset.sum_congr rfl
|
||
intro s hs
|
||
have : s ∈ Metric.closedBall 0 R := by
|
||
let A := h₁f.meromorphicOn.divisor.supportInU
|
||
have : s ∈ Function.support h₁f.meromorphicOn.divisor := by
|
||
simp at hs
|
||
exact hs
|
||
exact A this
|
||
rw [int₄ hR this]
|
||
linarith
|
||
rw [this] at decompose_int_G
|
||
|
||
|
||
simp at decompose_int_G
|
||
|
||
rw [int_logAbs_f_eq_int_G]
|
||
rw [decompose_int_G]
|
||
let X := h₄F
|
||
nth_rw 1 [h₄F]
|
||
simp
|
||
have : π⁻¹ * 2⁻¹ * (2 * π) = 1 := by
|
||
calc π⁻¹ * 2⁻¹ * (2 * π)
|
||
_ = π⁻¹ * (2⁻¹ * 2) * π := by ring
|
||
_ = π⁻¹ * π := by ring
|
||
_ = (π⁻¹ * π) := by ring
|
||
_ = 1 := by
|
||
rw [inv_mul_cancel₀]
|
||
exact pi_ne_zero
|
||
--rw [this]
|
||
rw [log_mul]
|
||
rw [log_prod]
|
||
simp
|
||
rw [add_comm]
|
||
rw [mul_add]
|
||
rw [← mul_assoc (π⁻¹ * 2⁻¹), this]
|
||
simp
|
||
rw [add_comm]
|
||
nth_rw 2 [add_comm]
|
||
rw [add_assoc]
|
||
congr
|
||
rw [Finset.mul_sum]
|
||
rw [← sub_eq_add_neg]
|
||
rw [← Finset.sum_sub_distrib]
|
||
rw [Finset.sum_congr rfl]
|
||
intro s hs
|
||
rw [log_mul, log_inv]
|
||
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
|
||
rw [mul_comm _ (2 * π)]
|
||
rw [← mul_assoc (π⁻¹ * 2⁻¹)]
|
||
rw [this]
|
||
simp
|
||
rw [mul_add]
|
||
ring
|
||
--
|
||
exact Ne.symm (ne_of_lt hR)
|
||
--
|
||
simp
|
||
by_contra hCon
|
||
rw [hCon] at hs
|
||
simp at hs
|
||
exact hs h'''₂f
|
||
--
|
||
intro s hs
|
||
apply zpow_ne_zero
|
||
simp
|
||
by_contra hCon
|
||
rw [hCon] at hs
|
||
simp at hs
|
||
exact hs h'''₂f
|
||
--
|
||
simp only [ne_eq, map_eq_zero]
|
||
rw [← ne_eq]
|
||
exact h₃F ⟨0, (by simp; exact le_of_lt hR)⟩
|
||
--
|
||
rw [Finset.prod_ne_zero_iff]
|
||
intro s hs
|
||
apply zpow_ne_zero
|
||
simp
|
||
by_contra hCon
|
||
rw [hCon] at hs
|
||
simp at hs
|
||
exact hs h'''₂f
|