277 lines
9.9 KiB
Plaintext
277 lines
9.9 KiB
Plaintext
import Mathlib.Analysis.Complex.Basic
|
||
import Nevanlinna.partialDeriv
|
||
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||
|
||
|
||
noncomputable def Complex.laplace (f : ℂ → F) : ℂ → F :=
|
||
partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||
|
||
notation "Δ" => Complex.laplace
|
||
|
||
|
||
theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ x = Δ f₂ x := by
|
||
unfold Complex.laplace
|
||
simp
|
||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1]
|
||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I]
|
||
|
||
|
||
theorem laplace_eventuallyEq' {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ =ᶠ[nhds x] Δ f₂ := by
|
||
unfold Complex.laplace
|
||
apply Filter.EventuallyEq.add
|
||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1
|
||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I
|
||
|
||
|
||
theorem laplace_add
|
||
{f₁ f₂ : ℂ → F}
|
||
(h₁ : ContDiff ℝ 2 f₁)
|
||
(h₂ : ContDiff ℝ 2 f₂) :
|
||
Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by
|
||
|
||
unfold Complex.laplace
|
||
rw [partialDeriv_add₂]
|
||
rw [partialDeriv_add₂]
|
||
rw [partialDeriv_add₂]
|
||
rw [partialDeriv_add₂]
|
||
exact
|
||
add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁))
|
||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂))
|
||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁))
|
||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))
|
||
|
||
exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl
|
||
exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl
|
||
exact h₁.differentiable one_le_two
|
||
exact h₂.differentiable one_le_two
|
||
exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl
|
||
exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl
|
||
exact h₁.differentiable one_le_two
|
||
exact h₂.differentiable one_le_two
|
||
|
||
|
||
theorem laplace_add_ContDiffOn
|
||
{f₁ f₂ : ℂ → F}
|
||
{s : Set ℂ}
|
||
(hs : IsOpen s)
|
||
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||
∀ x ∈ s, Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||
|
||
unfold Complex.laplace
|
||
simp
|
||
intro x hx
|
||
|
||
have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by
|
||
intro z hz
|
||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||
apply ContDiffOn.differentiableOn h₁ one_le_two
|
||
have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by
|
||
intro z hz
|
||
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||
apply ContDiffOn.differentiableOn h₂ one_le_two
|
||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use s
|
||
constructor
|
||
· exact IsOpen.mem_nhds hs hx
|
||
· intro z hz
|
||
apply partialDeriv_add₂_differentiableAt
|
||
exact hf₁ z hz
|
||
exact hf₂ z hz
|
||
rw [partialDeriv_eventuallyEq ℝ this]
|
||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||
|
||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use s
|
||
constructor
|
||
· exact IsOpen.mem_nhds hs hx
|
||
· intro z hz
|
||
apply partialDeriv_add₂_differentiableAt
|
||
exact hf₁ z hz
|
||
exact hf₂ z hz
|
||
rw [partialDeriv_eventuallyEq ℝ this]
|
||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||
|
||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||
-- I do not understand why. So, I need to do things by hand.
|
||
rw [add_assoc]
|
||
rw [add_assoc]
|
||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||
rw [add_comm]
|
||
rw [add_assoc]
|
||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||
rw [add_comm]
|
||
|
||
|
||
theorem laplace_add_ContDiffAt
|
||
{f₁ f₂ : ℂ → F}
|
||
{x : ℂ}
|
||
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||
Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||
|
||
unfold Complex.laplace
|
||
simp
|
||
|
||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||
repeat
|
||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)]
|
||
rw [partialDeriv_add₂_differentiableAt]
|
||
|
||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||
-- I do not understand why. So, I need to do things by hand.
|
||
rw [add_assoc]
|
||
rw [add_assoc]
|
||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||
rw [add_comm]
|
||
rw [add_assoc]
|
||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||
rw [add_comm]
|
||
|
||
repeat
|
||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl
|
||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl
|
||
|
||
|
||
theorem laplace_add_ContDiffAt'
|
||
{f₁ f₂ : ℂ → F}
|
||
{x : ℂ}
|
||
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||
Δ (f₁ + f₂) =ᶠ[nhds x] (Δ f₁) + (Δ f₂):= by
|
||
|
||
unfold Complex.laplace
|
||
|
||
rw [add_assoc]
|
||
nth_rw 5 [add_comm]
|
||
rw [add_assoc]
|
||
rw [← add_assoc]
|
||
|
||
have dualPDeriv : ∀ v : ℂ, partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x]
|
||
partialDeriv ℝ v (partialDeriv ℝ v f₁) + partialDeriv ℝ v (partialDeriv ℝ v f₂) := by
|
||
|
||
intro v
|
||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||
|
||
have t₁ : partialDeriv ℝ v (partialDeriv ℝ v (f₁ + f₂)) =ᶠ[nhds x] partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) := by
|
||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁) v
|
||
|
||
have t₂ : partialDeriv ℝ v (partialDeriv ℝ v f₁ + partialDeriv ℝ v f₂) =ᶠ[nhds x] (partialDeriv ℝ v (partialDeriv ℝ v f₁)) + (partialDeriv ℝ v (partialDeriv ℝ v f₂)) := by
|
||
apply partialDeriv_add₂_contDiffAt ℝ
|
||
apply partialDeriv_contDiffAt
|
||
exact h₁
|
||
apply partialDeriv_contDiffAt
|
||
exact h₂
|
||
|
||
apply Filter.EventuallyEq.trans t₁ t₂
|
||
|
||
have eventuallyEq_add
|
||
{a₁ a₂ b₁ b₂ : ℂ → F}
|
||
(h : a₁ =ᶠ[nhds x] b₁)
|
||
(h' : a₂ =ᶠ[nhds x] b₂) : (a₁ + a₂) =ᶠ[nhds x] (b₁ + b₂) := by
|
||
have {c₁ c₂ : ℂ → F} : (fun x => c₁ x + c₂ x) = c₁ + c₂ := by rfl
|
||
rw [← this, ← this]
|
||
exact Filter.EventuallyEq.add h h'
|
||
apply eventuallyEq_add
|
||
· exact dualPDeriv 1
|
||
· nth_rw 2 [add_comm]
|
||
exact dualPDeriv Complex.I
|
||
|
||
|
||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||
intro v
|
||
unfold Complex.laplace
|
||
repeat
|
||
rw [partialDeriv_smul₂]
|
||
simp
|
||
|
||
|
||
theorem laplace_compCLMAt
|
||
{f : ℂ → F}
|
||
{l : F →L[ℝ] G}
|
||
{x : ℂ}
|
||
(h : ContDiffAt ℝ 2 f x) :
|
||
Δ (l ∘ f) x = (l ∘ (Δ f)) x := by
|
||
|
||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||
obtain ⟨u, hu₁, hu₂⟩ : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||
apply ContDiffAt.contDiffOn h
|
||
rfl
|
||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||
use v
|
||
constructor
|
||
· exact IsOpen.mem_nhds hv₂ hv₃
|
||
· constructor
|
||
exact hv₂
|
||
constructor
|
||
· exact hv₃
|
||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||
|
||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||
intro w
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use v
|
||
constructor
|
||
· exact IsOpen.mem_nhds hv₂ hv₃
|
||
· intro y hy
|
||
apply partialDeriv_compContLinAt
|
||
let V := ContDiffOn.differentiableOn hv₄ one_le_two
|
||
apply DifferentiableOn.differentiableAt V
|
||
apply IsOpen.mem_nhds
|
||
assumption
|
||
assumption
|
||
|
||
unfold Complex.laplace
|
||
simp
|
||
|
||
rw [partialDeriv_eventuallyEq ℝ (D 1) 1]
|
||
rw [partialDeriv_compContLinAt]
|
||
rw [partialDeriv_eventuallyEq ℝ (D Complex.I) Complex.I]
|
||
rw [partialDeriv_compContLinAt]
|
||
simp
|
||
|
||
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I) le_rfl
|
||
|
||
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl
|
||
|
||
|
||
theorem laplace_compCLM
|
||
{f : ℂ → F}
|
||
{l : F →L[ℝ] G}
|
||
(h : ContDiff ℝ 2 f) :
|
||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||
funext z
|
||
exact laplace_compCLMAt h.contDiffAt
|
||
|
||
|
||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} :
|
||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||
unfold Complex.laplace
|
||
repeat
|
||
rw [partialDeriv_compCLE]
|
||
simp
|