nevanlinna/Nevanlinna/test.lean
Stefan Kebekus f85fafd05f Working...
2024-04-30 08:20:57 +02:00

131 lines
3.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.CauchyIntegral
--import Mathlib.Analysis.Complex.Module
open ComplexConjugate
#check DiffContOnCl.circleIntegral_sub_inv_smul
open Real
theorem CauchyIntegralFormula :
{R : } -- Radius of the ball
{w : } -- Point in the interior of the ball
{f : }, -- Holomorphic function
DiffContOnCl f (Metric.ball 0 R)
→ w ∈ Metric.ball 0 R
→ (∮ (z : ) in C(0, R), (z - w)⁻¹ • f z) = (2 * π * Complex.I) • f w := by
exact DiffContOnCl.circleIntegral_sub_inv_smul
#check CauchyIntegralFormula
#check HasDerivAt.continuousAt
#check Real.log
#check ComplexConjugate.conj
#check Complex.exp
theorem SimpleCauchyFormula :
{R : } -- Radius of the ball
{w : } -- Point in the interior of the ball
{f : }, -- Holomorphic function
Differentiable f
→ w ∈ Metric.ball 0 R
→ (∮ (z : ) in C(0, R), (z - w)⁻¹ • f z) = (2 * Real.pi * Complex.I) • f w := by
intro R w f fHyp
apply DiffContOnCl.circleIntegral_sub_inv_smul
constructor
· exact Differentiable.differentiableOn fHyp
· suffices Continuous f from by
exact Continuous.continuousOn this
rw [continuous_iff_continuousAt]
intro x
exact DifferentiableAt.continuousAt (fHyp x)
theorem JensenFormula₂ :
{R : } -- Radius of the ball
{f : }, -- Holomorphic function
Differentiable f
→ (∀ z ∈ Metric.ball 0 R, f z ≠ 0)
→ (∫ (θ : ) in Set.Icc 0 (2 * π), Complex.log ‖f (circleMap 0 R θ)‖ ) = 2 * π * Complex.log ‖f 0‖ := by
intro r f fHyp₁ fHyp₂
/- We treat the trivial case r = 0 separately. -/
by_cases rHyp : r = 0
rw [rHyp]
simp
left
unfold ENNReal.ofReal
simp
rw [max_eq_left (mul_nonneg zero_le_two pi_nonneg)]
simp
/- From hereon, we assume that r ≠ 0. -/
/- Replace the integral over 0 … 2π by a circle integral -/
suffices (∮ (z : ) in C(0, r), -(Complex.I * z⁻¹ * Complex.log ↑(Complex.abs (f z)))) = 2 * ↑π * Complex.log ↑‖f 0‖ from by
have : ∫ (θ : ) in Set.Icc 0 (2 * π), Complex.log ↑‖f (circleMap 0 r θ)‖ = (∮ (z : ) in C(0, r), -(Complex.I * z⁻¹ * Complex.log ↑(Complex.abs (f z)))) := by
have : (fun θ ↦ Complex.log ‖f (circleMap 0 r θ)‖) = (fun θ ↦ ((deriv (circleMap 0 r) θ)) • ((deriv (circleMap 0 r) θ)⁻¹ • Complex.log ↑‖f (circleMap 0 r θ)‖)) := by
funext θ
rw [← smul_assoc, smul_eq_mul, smul_eq_mul, mul_inv_cancel, one_mul]
simp
exact rHyp
rw [this]
simp
let tmp := circleIntegral_def_Icc (fun z ↦ -(Complex.I * z⁻¹ * (Complex.log ↑‖f z‖))) 0 r
simp at tmp
rw [← tmp]
rw [this]
have : ∀ z : , log (Complex.abs z) = 1/2 * Complex.log z + 1/2 * Complex.log (conj z) := by
intro z
by_cases argHyp : Complex.arg z = π
· rw [Complex.log, argHyp, Complex.log]
let ZZ := Complex.arg_conj z
rw [argHyp] at ZZ
simp at ZZ
have : conj z = z := by
apply?
sorry
let ZZ := Complex.log_conj z
nth_rewrite 1 [Complex.log]
simp
let φ := Complex.arg z
let r := Complex.abs z
have : z = r * Complex.exp (φ * Complex.I) := by
exact (Complex.abs_mul_exp_arg_mul_I z).symm
have : Complex.log z = Complex.log r + r*Complex.I := by
apply?
sorry
simp at XX
sorry
sorry