186 lines
4.8 KiB
Plaintext
186 lines
4.8 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
theorem MeromorphicOn.open_of_order_eq_top
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : MeromorphicOn f U) :
|
||
IsOpen { u : U | (h₁f u.1 u.2).order = ⊤ } := by
|
||
|
||
apply isOpen_iff_forall_mem_open.mpr
|
||
intro z hz
|
||
simp at hz
|
||
|
||
have h₁z := hz
|
||
rw [MeromorphicAt.order_eq_top_iff] at hz
|
||
rw [eventually_nhdsWithin_iff] at hz
|
||
rw [eventually_nhds_iff] at hz
|
||
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
|
||
let t : Set U := Subtype.val ⁻¹' t'
|
||
use t
|
||
constructor
|
||
· intro w hw
|
||
simp
|
||
by_cases h₁w : w = z
|
||
· rwa [h₁w]
|
||
· --
|
||
rw [MeromorphicAt.order_eq_top_iff]
|
||
rw [eventually_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use t' \ {z.1}
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
apply h₁t'
|
||
exact Set.mem_of_mem_diff h₁y
|
||
exact Set.mem_of_mem_inter_right h₁y
|
||
· constructor
|
||
· apply IsOpen.sdiff h₂t'
|
||
exact isClosed_singleton
|
||
· rw [Set.mem_diff]
|
||
constructor
|
||
· exact hw
|
||
· simp
|
||
exact Subtype.coe_ne_coe.mpr h₁w
|
||
|
||
· constructor
|
||
· exact isOpen_induced h₂t'
|
||
· exact h₃t'
|
||
|
||
|
||
theorem MeromorphicOn.open_of_order_neq_top
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : MeromorphicOn f U) :
|
||
IsOpen { u : U | (h₁f u.1 u.2).order ≠ ⊤ } := by
|
||
|
||
apply isOpen_iff_forall_mem_open.mpr
|
||
intro z hz
|
||
simp at hz
|
||
|
||
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
|
||
rcases A with h|h
|
||
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
|
||
tauto
|
||
· let A := (h₁f z.1 z.2).eventually_analyticAt
|
||
let B := Filter.Eventually.and h A
|
||
rw [eventually_nhdsWithin_iff] at B
|
||
rw [eventually_nhds_iff] at B
|
||
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
|
||
let t : Set U := Subtype.val ⁻¹' t'
|
||
use t
|
||
constructor
|
||
· intro w hw
|
||
simp
|
||
by_cases h₁w : w = z
|
||
· rwa [h₁w]
|
||
· let B := h₁t' w hw
|
||
simp at B
|
||
have : (w : ℂ) ≠ (z : ℂ) := by exact Subtype.coe_ne_coe.mpr h₁w
|
||
let C := B this
|
||
let D := C.2.order_eq_zero_iff.2 C.1
|
||
rw [C.2.meromorphicAt_order, D]
|
||
simp
|
||
· constructor
|
||
· exact isOpen_induced h₂t'
|
||
· exact h₃t'
|
||
|
||
|
||
theorem MeromorphicOn.clopen_of_order_eq_top
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : MeromorphicOn f U) :
|
||
IsClopen { u : U | (h₁f u.1 u.2).order = ⊤ } := by
|
||
|
||
constructor
|
||
· rw [← isOpen_compl_iff]
|
||
exact open_of_order_neq_top h₁f
|
||
· exact open_of_order_eq_top h₁f
|
||
|
||
|
||
theorem MeromorphicOn.order_ne_top'
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : MeromorphicOn f U)
|
||
(hU : IsConnected U) :
|
||
(∃ u : U, (h₁f u u.2).order ≠ ⊤) ↔ (∀ u : U, (h₁f u u.2).order ≠ ⊤) := by
|
||
|
||
constructor
|
||
· intro h₂f
|
||
let A := h₁f.clopen_of_order_eq_top
|
||
have : PreconnectedSpace U := by
|
||
apply isPreconnected_iff_preconnectedSpace.mp
|
||
exact IsConnected.isPreconnected hU
|
||
rw [isClopen_iff] at A
|
||
rcases A with h|h
|
||
· intro u
|
||
have : u ∉ (∅ : Set U) := by exact fun a => a
|
||
rw [← h] at this
|
||
simp at this
|
||
tauto
|
||
· obtain ⟨u, hU⟩ := h₂f
|
||
have A : u ∈ Set.univ := by trivial
|
||
rw [← h] at A
|
||
simp at A
|
||
tauto
|
||
· intro h₂f
|
||
let A := hU.nonempty
|
||
obtain ⟨v, hv⟩ := A
|
||
use ⟨v, hv⟩
|
||
exact h₂f ⟨v, hv⟩
|
||
|
||
|
||
theorem StronglyMeromorphicOn.order_ne_top
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(hU : IsConnected U)
|
||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||
|
||
rw [← h₁f.meromorphicOn.order_ne_top' hU]
|
||
obtain ⟨u, hu⟩ := h₂f
|
||
use u
|
||
rw [← (h₁f u u.2).order_eq_zero_iff] at hu
|
||
rw [hu]
|
||
simp
|
||
|
||
|
||
theorem MeromorphicOn.nonvanish_of_order_ne_top
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : ∃ u : U, (h₁f u u.2).order ≠ ⊤)
|
||
(h₁U : IsConnected U)
|
||
(h₂U : interior U ≠ ∅) :
|
||
∃ u ∈ U, f u ≠ 0 := by
|
||
|
||
by_contra hCon
|
||
push_neg at hCon
|
||
|
||
have : ∃ u : U, (h₁f u u.2).order = ⊤ := by
|
||
obtain ⟨v, h₁v⟩ := Set.nonempty_iff_ne_empty'.2 h₂U
|
||
have h₂v : v ∈ U := by apply interior_subset h₁v
|
||
use ⟨v, h₂v⟩
|
||
rw [MeromorphicAt.order_eq_top_iff]
|
||
rw [eventually_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use interior U
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
exact hCon y (interior_subset h₁y)
|
||
· simp [h₁v]
|
||
|
||
let A := h₁f.order_ne_top' h₁U
|
||
rw [← not_iff_not] at A
|
||
push_neg at A
|
||
have B := A.2 this
|
||
obtain ⟨u, hu⟩ := h₂f
|
||
tauto
|