331 lines
9.5 KiB
Plaintext
331 lines
9.5 KiB
Plaintext
import Nevanlinna.laplace
|
||
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁]
|
||
|
||
|
||
def Harmonic (f : ℂ → F) : Prop :=
|
||
(ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0)
|
||
|
||
def HarmonicAt (f : ℂ → F) (x : ℂ) : Prop :=
|
||
(ContDiffAt ℝ 2 f x) ∧ (Δ f =ᶠ[nhds x] 0)
|
||
|
||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
||
|
||
|
||
theorem HarmonicAt_iff
|
||
{f : ℂ → F}
|
||
{x : ℂ} :
|
||
HarmonicAt f x ↔ ∃ s : Set ℂ, IsOpen s ∧ x ∈ s ∧ (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) := by
|
||
constructor
|
||
· intro hf
|
||
obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl (by trivial)
|
||
simp at h₃s₁
|
||
obtain ⟨t₂, h₁t₂, h₂t₂⟩ := (Filter.eventuallyEq_iff_exists_mem.1 hf.2)
|
||
obtain ⟨s₂, h₁s₂, h₂s₂, h₃s₂⟩ := mem_nhds_iff.1 h₁t₂
|
||
let s := s₁ ∩ s₂
|
||
use s
|
||
constructor
|
||
· exact IsOpen.inter h₁s₁ h₂s₂
|
||
· constructor
|
||
· exact Set.mem_inter h₂s₁ h₃s₂
|
||
· constructor
|
||
· exact h₃s₁.mono Set.inter_subset_left
|
||
· intro z hz
|
||
exact h₂t₂ (h₁s₂ hz.2)
|
||
· intro hyp
|
||
obtain ⟨s, h₁s, h₂s, h₁f, h₂f⟩ := hyp
|
||
constructor
|
||
· apply h₁f.contDiffAt
|
||
apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||
· apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use s
|
||
constructor
|
||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||
· exact h₂f
|
||
|
||
theorem HarmonicAt_isOpen
|
||
(f : ℂ → F) :
|
||
IsOpen { x : ℂ | HarmonicAt f x } := by
|
||
|
||
rw [← subset_interior_iff_isOpen]
|
||
intro x hx
|
||
simp at hx
|
||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HarmonicAt_iff.1 hx
|
||
use s
|
||
constructor
|
||
· simp
|
||
constructor
|
||
· exact h₁s
|
||
· intro x hx
|
||
simp
|
||
rw [HarmonicAt_iff]
|
||
use s
|
||
· exact h₂s
|
||
|
||
theorem HarmonicAt_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : HarmonicAt f₁ x ↔ HarmonicAt f₂ x := by
|
||
constructor
|
||
· intro h₁
|
||
constructor
|
||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 (Filter.EventuallyEq.symm h)
|
||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' (Filter.EventuallyEq.symm h)) h₁.2
|
||
· intro h₁
|
||
constructor
|
||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 h
|
||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' h) h₁.2
|
||
|
||
|
||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||
HarmonicOn f s := by
|
||
constructor
|
||
· apply contDiffOn_of_locally_contDiffOn
|
||
intro x xHyp
|
||
obtain ⟨u, uHyp⟩ := h x xHyp
|
||
use u
|
||
exact ⟨ uHyp.1, ⟨uHyp.2.1, uHyp.2.2.1⟩⟩
|
||
· intro x xHyp
|
||
obtain ⟨u, uHyp⟩ := h x xHyp
|
||
exact (uHyp.2.2.2) x ⟨xHyp, uHyp.2.1⟩
|
||
|
||
|
||
theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (hf₁₂ : ∀ x ∈ s, f₁ x = f₂ x) :
|
||
HarmonicOn f₁ s ↔ HarmonicOn f₂ s := by
|
||
constructor
|
||
· intro h₁
|
||
constructor
|
||
· apply ContDiffOn.congr h₁.1
|
||
intro x hx
|
||
rw [eq_comm]
|
||
exact hf₁₂ x hx
|
||
· intro z hz
|
||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· exact hf₁₂
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [← laplace_eventuallyEq this]
|
||
exact h₁.2 z hz
|
||
· intro h₁
|
||
constructor
|
||
· apply ContDiffOn.congr h₁.1
|
||
intro x hx
|
||
exact hf₁₂ x hx
|
||
· intro z hz
|
||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· exact hf₁₂
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [laplace_eventuallyEq this]
|
||
exact h₁.2 z hz
|
||
|
||
|
||
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
|
||
Harmonic (f₁ + f₂) := by
|
||
constructor
|
||
· exact ContDiff.add h₁.1 h₂.1
|
||
· rw [laplace_add h₁.1 h₂.1]
|
||
simp
|
||
intro z
|
||
rw [h₁.2 z, h₂.2 z]
|
||
simp
|
||
|
||
|
||
theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : HarmonicOn f₁ s) (h₂ : HarmonicOn f₂ s) :
|
||
HarmonicOn (f₁ + f₂) s := by
|
||
constructor
|
||
· exact ContDiffOn.add h₁.1 h₂.1
|
||
· intro z hz
|
||
rw [laplace_add_ContDiffOn hs h₁.1 h₂.1 z hz]
|
||
rw [h₁.2 z hz, h₂.2 z hz]
|
||
simp
|
||
|
||
|
||
theorem harmonicAt_add_harmonicAt_is_harmonicAt
|
||
{f₁ f₂ : ℂ → F}
|
||
{x : ℂ}
|
||
(h₁ : HarmonicAt f₁ x)
|
||
(h₂ : HarmonicAt f₂ x) :
|
||
HarmonicAt (f₁ + f₂) x := by
|
||
constructor
|
||
· exact ContDiffAt.add h₁.1 h₂.1
|
||
· apply Filter.EventuallyEq.trans (laplace_add_ContDiffAt' h₁.1 h₂.1)
|
||
apply Filter.EventuallyEq.trans (Filter.EventuallyEq.add h₁.2 h₂.2)
|
||
simp
|
||
rfl
|
||
|
||
|
||
theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) :
|
||
Harmonic (c • f) := by
|
||
constructor
|
||
· exact ContDiff.const_smul c h.1
|
||
· rw [laplace_smul]
|
||
dsimp
|
||
intro z
|
||
rw [h.2 z]
|
||
simp
|
||
|
||
|
||
theorem harmonicAt_smul_const_is_harmonicAt
|
||
{f : ℂ → F}
|
||
{x : ℂ}
|
||
{c : ℝ}
|
||
(h : HarmonicAt f x) :
|
||
HarmonicAt (c • f) x := by
|
||
constructor
|
||
· exact ContDiffAt.const_smul c h.1
|
||
· rw [laplace_smul]
|
||
have A := Filter.EventuallyEq.const_smul h.2 c
|
||
simp at A
|
||
assumption
|
||
|
||
|
||
theorem harmonic_iff_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (hc : c ≠ 0) :
|
||
Harmonic f ↔ Harmonic (c • f) := by
|
||
constructor
|
||
· exact harmonic_smul_const_is_harmonic
|
||
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
|
||
exact fun a => harmonic_smul_const_is_harmonic a
|
||
|
||
|
||
theorem harmonicAt_iff_smul_const_is_harmonicAt
|
||
{f : ℂ → F}
|
||
{x : ℂ}
|
||
{c : ℝ}
|
||
(hc : c ≠ 0) :
|
||
HarmonicAt f x ↔ HarmonicAt (c • f) x := by
|
||
constructor
|
||
· exact harmonicAt_smul_const_is_harmonicAt
|
||
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
|
||
exact fun a => harmonicAt_smul_const_is_harmonicAt a
|
||
|
||
|
||
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
||
Harmonic (l ∘ f) := by
|
||
|
||
constructor
|
||
· -- Continuous differentiability
|
||
apply ContDiff.comp
|
||
exact ContinuousLinearMap.contDiff l
|
||
exact h.1
|
||
· rw [laplace_compCLM]
|
||
simp
|
||
intro z
|
||
rw [h.2 z]
|
||
simp
|
||
exact ContDiff.restrict_scalars ℝ h.1
|
||
|
||
|
||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) :
|
||
HarmonicOn (l ∘ f) s := by
|
||
|
||
constructor
|
||
· -- Continuous differentiability
|
||
apply ContDiffOn.continuousLinearMap_comp
|
||
exact h.1
|
||
· -- Vanishing of Laplace
|
||
intro z zHyp
|
||
rw [laplace_compCLMAt]
|
||
simp
|
||
rw [h.2 z]
|
||
simp
|
||
assumption
|
||
apply ContDiffOn.contDiffAt h.1
|
||
exact IsOpen.mem_nhds hs zHyp
|
||
|
||
|
||
theorem harmonicAt_comp_CLM_is_harmonicAt
|
||
{f : ℂ → F₁}
|
||
{z : ℂ}
|
||
{l : F₁ →L[ℝ] G}
|
||
(h : HarmonicAt f z) :
|
||
HarmonicAt (l ∘ f) z := by
|
||
|
||
constructor
|
||
· -- ContDiffAt ℝ 2 (⇑l ∘ f) z
|
||
apply ContDiffAt.continuousLinearMap_comp
|
||
exact h.1
|
||
· -- Δ (⇑l ∘ f) =ᶠ[nhds z] 0
|
||
obtain ⟨r, h₁r, h₂r⟩ := h.1.contDiffOn le_rfl (by trivial)
|
||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁r
|
||
obtain ⟨t, h₁t, h₂t⟩ := Filter.eventuallyEq_iff_exists_mem.1 h.2
|
||
obtain ⟨u, h₁u, h₂u, h₃u⟩ := mem_nhds_iff.1 h₁t
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use s ∩ u
|
||
constructor
|
||
· apply IsOpen.mem_nhds
|
||
exact IsOpen.inter h₂s h₂u
|
||
constructor
|
||
· exact h₃s
|
||
· exact h₃u
|
||
· intro x xHyp
|
||
rw [laplace_compCLMAt]
|
||
simp
|
||
rw [h₂t]
|
||
simp
|
||
exact h₁u xHyp.2
|
||
apply (h₂r.mono h₁s).contDiffAt (IsOpen.mem_nhds h₂s xHyp.1)
|
||
|
||
|
||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||
Harmonic f ↔ Harmonic (l ∘ f) := by
|
||
|
||
constructor
|
||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||
rw [this]
|
||
exact harmonic_comp_CLM_is_harmonic
|
||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
simp
|
||
nth_rewrite 2 [this]
|
||
exact harmonic_comp_CLM_is_harmonic
|
||
|
||
|
||
theorem harmonicAt_iff_comp_CLE_is_harmonicAt
|
||
{f : ℂ → F₁}
|
||
{z : ℂ}
|
||
{l : F₁ ≃L[ℝ] G₁} :
|
||
HarmonicAt f z ↔ HarmonicAt (l ∘ f) z := by
|
||
|
||
constructor
|
||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||
rw [this]
|
||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
simp
|
||
nth_rewrite 2 [this]
|
||
exact harmonicAt_comp_CLM_is_harmonicAt
|
||
|
||
|
||
theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ ≃L[ℝ] G₁} (hs : IsOpen s) :
|
||
HarmonicOn f s ↔ HarmonicOn (l ∘ f) s := by
|
||
|
||
constructor
|
||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||
rw [this]
|
||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
simp
|
||
nth_rewrite 2 [this]
|
||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|