179 lines
4.2 KiB
Plaintext
179 lines
4.2 KiB
Plaintext
import Mathlib.Analysis.Complex.CauchyIntegral
|
||
--import Mathlib.Analysis.Complex.TaylorSeries
|
||
import Nevanlinna.cauchyRiemann
|
||
|
||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G]
|
||
|
||
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
||
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
||
|
||
|
||
theorem HolomorphicAt_iff
|
||
{f : E → F}
|
||
{x : E} :
|
||
HolomorphicAt f x ↔ ∃ s :
|
||
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||
constructor
|
||
· intro hf
|
||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
|
||
use s
|
||
constructor
|
||
· assumption
|
||
· constructor
|
||
· assumption
|
||
· intro z hz
|
||
exact h₂t z (h₁s hz)
|
||
· intro hyp
|
||
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
|
||
use s
|
||
constructor
|
||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||
· assumption
|
||
|
||
|
||
theorem Differentiable.holomorphicAt
|
||
{f : E → F}
|
||
(hf : Differentiable ℂ f)
|
||
{x : E} :
|
||
HolomorphicAt f x := by
|
||
apply HolomorphicAt_iff.2
|
||
use Set.univ
|
||
constructor
|
||
· exact isOpen_univ
|
||
· constructor
|
||
· exact trivial
|
||
· intro z _
|
||
exact hf z
|
||
|
||
|
||
theorem HolomorphicAt_isOpen
|
||
(f : E → F) :
|
||
IsOpen { x : E | HolomorphicAt f x } := by
|
||
|
||
rw [← subset_interior_iff_isOpen]
|
||
intro x hx
|
||
simp at hx
|
||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
|
||
use s
|
||
constructor
|
||
· simp
|
||
constructor
|
||
· exact h₁s
|
||
· intro x hx
|
||
simp
|
||
use s
|
||
constructor
|
||
· exact IsOpen.mem_nhds h₁s hx
|
||
· exact h₃s
|
||
· exact h₂s
|
||
|
||
|
||
theorem HolomorphicAt_comp
|
||
{g : E → F}
|
||
{f : F → G}
|
||
{z : E}
|
||
(hf : HolomorphicAt f (g z))
|
||
(hg : HolomorphicAt g z) :
|
||
HolomorphicAt (f ∘ g) z := by
|
||
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
|
||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||
use UE ∩ g⁻¹' UF
|
||
constructor
|
||
· simp
|
||
constructor
|
||
· assumption
|
||
· apply ContinuousAt.preimage_mem_nhds
|
||
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
|
||
assumption
|
||
· intro x hx
|
||
apply DifferentiableAt.comp
|
||
apply h₂UF
|
||
exact hx.2
|
||
apply h₂UE
|
||
exact hx.1
|
||
|
||
|
||
theorem HolomorphicAt_neg
|
||
{f : E → F}
|
||
{z : E}
|
||
(hf : HolomorphicAt f z) :
|
||
HolomorphicAt (-f) z := by
|
||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||
use UF
|
||
constructor
|
||
· assumption
|
||
· intro z hz
|
||
apply differentiableAt_neg_iff.mp
|
||
simp
|
||
exact h₂UF z hz
|
||
|
||
|
||
theorem HolomorphicAt.analyticAt
|
||
[CompleteSpace F]
|
||
{f : ℂ → F}
|
||
{x : ℂ} :
|
||
HolomorphicAt f x → AnalyticAt ℂ f x := by
|
||
intro hf
|
||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||
apply DifferentiableOn.analyticAt (s := s)
|
||
intro z hz
|
||
apply DifferentiableAt.differentiableWithinAt
|
||
apply h₃s
|
||
exact hz
|
||
exact IsOpen.mem_nhds h₁s h₂s
|
||
|
||
|
||
theorem HolomorphicAt.contDiffAt
|
||
[CompleteSpace F]
|
||
{f : ℂ → F}
|
||
{z : ℂ}
|
||
{n : ℕ}
|
||
(hf : HolomorphicAt f z) :
|
||
ContDiffAt ℝ n f z := by
|
||
|
||
let t := {x | HolomorphicAt f x}
|
||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||
have hz : z ∈ t := by exact hf
|
||
|
||
-- ContDiffAt ℝ _ f z
|
||
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
|
||
suffices h : ContDiffOn ℂ n f t from by
|
||
apply ContDiffOn.restrict_scalars ℝ h
|
||
apply DifferentiableOn.contDiffOn _ ht
|
||
intro w hw
|
||
apply DifferentiableAt.differentiableWithinAt
|
||
-- DifferentiableAt ℂ f w
|
||
let hfw : HolomorphicAt f w := hw
|
||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hfw
|
||
exact h₃s w h₂s
|
||
|
||
|
||
theorem HolomorphicAt.differentiableAt
|
||
{f : ℂ → F}
|
||
{z : ℂ}
|
||
(hf : HolomorphicAt f z) :
|
||
DifferentiableAt ℂ f z := by
|
||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||
exact h₃s z h₂s
|
||
|
||
|
||
theorem HolomorphicAt.CauchyRiemannAt
|
||
{f : ℂ → F}
|
||
{z : ℂ}
|
||
(h : HolomorphicAt f z) :
|
||
partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||
|
||
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
|
||
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use s
|
||
constructor
|
||
· exact IsOpen.mem_nhds h₁s hz
|
||
· intro w hw
|
||
let h := h₂f w hw
|
||
unfold partialDeriv
|
||
apply CauchyRiemann₅ h
|