nevanlinna/Nevanlinna/leftovers/diffOp.lean
2025-01-03 18:08:55 +01:00

105 lines
3.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
/-
Let E, F, G be vector spaces over nontrivally normed field 𝕜, a homogeneus
linear differential operator of order n is a map that attaches to every point e
of E a linear evaluation
{Continuous 𝕜-multilinear maps E → F in n variables} → G
In other words, homogeneus linear differential operator of order n is an
instance of the type:
D : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
Given any map f : E → F, one obtains a map D f : E → G by sending a point e to
the evaluation (D e), applied to the n.th derivative of f at e
fun e ↦ D e (iteratedFDeriv 𝕜 n f e)
-/
@[ext]
class HomLinDiffOp
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
(n : )
(E : Type*) [NormedAddCommGroup E] [NormedSpace 𝕜 E]
(F : Type*) [NormedAddCommGroup F] [NormedSpace 𝕜 F]
(G : Type*) [NormedAddCommGroup G] [NormedSpace 𝕜 G]
where
tensorfield : E → ( E [×n]→L[𝕜] F) →L[𝕜] G
-- tensorfield : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
namespace HomLinDiffOp
noncomputable def toFun
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
{n : }
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
{G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
(o : HomLinDiffOp 𝕜 n E F G)
: (E → F) → (E → G) :=
fun f z ↦ o.tensorfield z (iteratedFDeriv 𝕜 n f z)
noncomputable def Laplace
{𝕜 : Type*} [RCLike 𝕜]
{n : }
: HomLinDiffOp 𝕜 2 (EuclideanSpace 𝕜 (Fin n)) 𝕜 𝕜
where
tensorfield := by
intro _
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
rw [finrank_euclideanSpace_fin] at v
exact {
toFun := fun f' ↦ ∑ i, f' ![v i, v i]
map_add' := by
intro f₁ f₂
exact Finset.sum_add_distrib
map_smul' := by
intro m f
exact Eq.symm (Finset.mul_sum Finset.univ (fun i ↦ f ![v i, v i]) m)
cont := by
simp
apply continuous_finset_sum
intro i _
exact ContinuousEvalConst.continuous_eval_const ![v i, v i]
}
noncomputable def Gradient
{𝕜 : Type*} [RCLike 𝕜]
{n : }
: HomLinDiffOp 𝕜 1 (EuclideanSpace 𝕜 (Fin n)) 𝕜 (EuclideanSpace 𝕜 (Fin n))
where
tensorfield := by
intro _
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
rw [finrank_euclideanSpace_fin] at v
exact {
toFun := fun f' ↦ ∑ i, (f' ![v i]) • (v i)
map_add' := by
intro f₁ f₂
simp; simp_rw [add_smul, Finset.sum_add_distrib]
map_smul' := by
intro m f
simp; simp_rw [Finset.smul_sum, ←smul_assoc,smul_eq_mul]
cont := by
simp
apply continuous_finset_sum
intro i _
apply Continuous.smul
exact ContinuousEvalConst.continuous_eval_const ![v i]
exact continuous_const
}
end HomLinDiffOp