77 lines
2.1 KiB
Plaintext
77 lines
2.1 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||
import Mathlib.Analysis.Calculus.FDeriv.Add
|
||
import Nevanlinna.analyticAt
|
||
|
||
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
|
||
variable {f f₀ f₁ g : E → F}
|
||
variable {f' f₀' f₁' g' : E →L[𝕜] F}
|
||
variable (e : E →L[𝕜] F)
|
||
variable {x : E}
|
||
variable {s t : Set E}
|
||
variable {L L₁ L₂ : Filter E}
|
||
|
||
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
|
||
|
||
|
||
-- import Mathlib.Analysis.Calculus.FDeriv.Add
|
||
|
||
@[fun_prop]
|
||
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
|
||
Differentiable 𝕜 (c • f) := by
|
||
have : c • f = fun x ↦ c • f x := rfl
|
||
rw [this]
|
||
exact Differentiable.const_smul h c
|
||
|
||
|
||
-- Mathlib.Analysis.Calculus.ContDiff.Basic
|
||
|
||
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
|
||
ContDiff 𝕜 n (c • f) := by
|
||
have : c • f = fun x ↦ c • f x := rfl
|
||
rw [this]
|
||
exact ContDiff.const_smul c hf
|
||
|
||
|
||
|
||
open Topology Filter
|
||
|
||
lemma Mnhds
|
||
{α : Type}
|
||
{f g : ℂ → α}
|
||
{z₀ : ℂ}
|
||
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
|
||
(h₂ : f z₀ = g z₀) :
|
||
f =ᶠ[𝓝 z₀] g := by
|
||
apply eventually_nhds_iff.2
|
||
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
by_cases h₂y : y ∈ ({z₀}ᶜ : Set ℂ)
|
||
· exact h₁t y hy h₂y
|
||
· simp at h₂y
|
||
rwa [h₂y]
|
||
· exact h₂t
|
||
|
||
-- unclear where this should go
|
||
|
||
lemma WithTopCoe
|
||
{n : WithTop ℕ} :
|
||
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
||
rcases n with h|h
|
||
· intro h
|
||
contradiction
|
||
· intro h₁
|
||
simp only [WithTop.map, Option.map] at h₁
|
||
have : (h : ℤ) = 0 := by
|
||
exact WithTop.coe_eq_zero.mp h₁
|
||
have : h = 0 := by
|
||
exact Int.ofNat_eq_zero.mp this
|
||
rw [this]
|
||
rfl
|