377 lines
11 KiB
Plaintext
377 lines
11 KiB
Plaintext
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
|
||
lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((π / 2)⁻¹ * x)‖ := by
|
||
|
||
intro x hx
|
||
by_cases h'x : x = 0
|
||
· rw [h'x]; simp
|
||
|
||
-- Now handle the case where x ≠ 0
|
||
have l₀ : log ((π / 2)⁻¹ * x) ≤ 0 := by
|
||
apply log_nonpos
|
||
apply mul_nonneg
|
||
apply le_of_lt
|
||
apply inv_pos.2
|
||
apply div_pos
|
||
exact pi_pos
|
||
exact zero_lt_two
|
||
apply (Set.mem_Icc.1 hx).1
|
||
simp
|
||
apply mul_le_one₀
|
||
rw [div_le_one pi_pos]
|
||
exact two_le_pi
|
||
exact (Set.mem_Icc.1 hx).1
|
||
exact (Set.mem_Icc.1 hx).2
|
||
|
||
have l₁ : 0 ≤ sin x := by
|
||
apply sin_nonneg_of_nonneg_of_le_pi (Set.mem_Icc.1 hx).1
|
||
trans (1 : ℝ)
|
||
exact (Set.mem_Icc.1 hx).2
|
||
trans π / 2
|
||
exact one_le_pi_div_two
|
||
norm_num [pi_nonneg]
|
||
have l₂ : log (sin x) ≤ 0 := log_nonpos l₁ (sin_le_one x)
|
||
|
||
simp only [norm_eq_abs, Function.comp_apply]
|
||
rw [abs_eq_neg_self.2 l₀]
|
||
rw [abs_eq_neg_self.2 l₂]
|
||
simp only [neg_le_neg_iff, ge_iff_le]
|
||
|
||
have l₃ : x ∈ (Set.Ioi 0) := by
|
||
simp
|
||
exact lt_of_le_of_ne (Set.mem_Icc.1 hx).1 ( fun a => h'x (id (Eq.symm a)) )
|
||
|
||
have l₅ : 0 < (π / 2)⁻¹ * x := by
|
||
apply mul_pos
|
||
apply inv_pos.2
|
||
apply div_pos pi_pos zero_lt_two
|
||
exact l₃
|
||
|
||
have : ∀ x ∈ (Set.Icc 0 (π / 2)), (π / 2)⁻¹ * x ≤ sin x := by
|
||
intro x hx
|
||
|
||
have i₀ : 0 ∈ Set.Icc 0 π :=
|
||
Set.left_mem_Icc.mpr pi_nonneg
|
||
have i₁ : π / 2 ∈ Set.Icc 0 π :=
|
||
Set.mem_Icc.mpr ⟨div_nonneg pi_nonneg zero_le_two, half_le_self pi_nonneg⟩
|
||
|
||
have i₂ : 0 ≤ 1 - (π / 2)⁻¹ * x := by
|
||
rw [sub_nonneg]
|
||
calc (π / 2)⁻¹ * x
|
||
_ ≤ (π / 2)⁻¹ * (π / 2) := by
|
||
apply mul_le_mul_of_nonneg_left
|
||
exact (Set.mem_Icc.1 hx).2
|
||
apply inv_nonneg.mpr (div_nonneg pi_nonneg zero_le_two)
|
||
_ = 1 := by
|
||
apply inv_mul_cancel₀
|
||
apply div_ne_zero_iff.mpr
|
||
constructor
|
||
· exact pi_ne_zero
|
||
· exact Ne.symm (NeZero.ne' 2)
|
||
|
||
have i₃ : 0 ≤ (π / 2)⁻¹ * x := by
|
||
apply mul_nonneg
|
||
apply inv_nonneg.2
|
||
apply div_nonneg
|
||
exact pi_nonneg
|
||
exact zero_le_two
|
||
exact (Set.mem_Icc.1 hx).1
|
||
|
||
have i₄ : 1 - (π / 2)⁻¹ * x + (π / 2)⁻¹ * x = 1 := by ring
|
||
|
||
let B := strictConcaveOn_sin_Icc.concaveOn.2 i₀ i₁ i₂ i₃ i₄
|
||
simp [Real.sin_pi_div_two] at B
|
||
rw [(by ring_nf; rw [mul_inv_cancel₀ pi_ne_zero, one_mul] : 2 / π * x * (π / 2) = x)] at B
|
||
simpa
|
||
|
||
apply log_le_log l₅
|
||
apply this
|
||
apply Set.mem_Icc.mpr
|
||
constructor
|
||
· exact le_of_lt l₃
|
||
· trans 1
|
||
exact (Set.mem_Icc.1 hx).2
|
||
exact one_le_pi_div_two
|
||
|
||
|
||
lemma intervalIntegrable_log_sin₁ : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||
|
||
have int_log : IntervalIntegrable (fun x ↦ ‖log x‖) volume 0 1 := by
|
||
apply IntervalIntegrable.norm
|
||
-- Extract lemma here: log is integrable on [0, 1], and in fact on any
|
||
-- interval [a, b]
|
||
rw [← neg_neg log]
|
||
apply IntervalIntegrable.neg
|
||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||
· intro x hx
|
||
norm_num at hx
|
||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||
norm_num
|
||
· intro x hx
|
||
norm_num at hx
|
||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||
|
||
|
||
have int_log : IntervalIntegrable (fun x ↦ ‖log ((π / 2)⁻¹ * x)‖) volume 0 1 := by
|
||
|
||
have A := IntervalIntegrable.comp_mul_right int_log (π / 2)⁻¹
|
||
simp only [norm_eq_abs] at A
|
||
conv =>
|
||
arg 1
|
||
intro x
|
||
rw [mul_comm]
|
||
simp only [norm_eq_abs]
|
||
apply IntervalIntegrable.mono A
|
||
simp
|
||
trans Set.Icc 0 (π / 2)
|
||
exact Set.Icc_subset_Icc (Preorder.le_refl 0) one_le_pi_div_two
|
||
exact Set.Icc_subset_uIcc
|
||
exact Preorder.le_refl volume
|
||
|
||
apply IntervalIntegrable.mono_fun' (g := fun x ↦ ‖log ((π / 2)⁻¹ * x)‖)
|
||
exact int_log
|
||
|
||
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||
apply ContinuousOn.aestronglyMeasurable
|
||
apply ContinuousOn.comp (t := Ι 0 1)
|
||
apply ContinuousOn.mono (s := {0}ᶜ)
|
||
exact continuousOn_log
|
||
intro x hx
|
||
by_contra contra
|
||
simp at contra
|
||
rw [contra, Set.left_mem_uIoc] at hx
|
||
linarith
|
||
exact continuousOn_sin
|
||
|
||
-- Set.MapsTo sin (Ι 0 1) (Ι 0 1)
|
||
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||
|
||
-- MeasurableSet (Ι 0 1)
|
||
exact measurableSet_uIoc
|
||
|
||
-- (fun x => ‖(log ∘ sin) x‖) ≤ᶠ[ae (volume.restrict (Ι 0 1))] ‖log‖
|
||
dsimp [EventuallyLE]
|
||
rw [MeasureTheory.ae_restrict_iff]
|
||
apply MeasureTheory.ae_of_all
|
||
intro x hx
|
||
have : x ∈ Set.Icc 0 1 := by
|
||
simp
|
||
simp at hx
|
||
constructor
|
||
· exact le_of_lt hx.1
|
||
· exact hx.2
|
||
let A := logsinBound x this
|
||
simp only [Function.comp_apply, norm_eq_abs] at A
|
||
exact A
|
||
|
||
apply measurableSet_le
|
||
apply Measurable.comp'
|
||
exact continuous_abs.measurable
|
||
exact Measurable.comp' measurable_log continuous_sin.measurable
|
||
-- Measurable fun a => |log ((π / 2)⁻¹ * a)|
|
||
apply Measurable.comp'
|
||
exact continuous_abs.measurable
|
||
apply Measurable.comp'
|
||
exact measurable_log
|
||
exact measurable_const_mul (π / 2)⁻¹
|
||
|
||
lemma intervalIntegrable_log_sin₂ : IntervalIntegrable (log ∘ sin) volume 0 (π / 2) := by
|
||
|
||
apply IntervalIntegrable.trans (b := 1)
|
||
exact intervalIntegrable_log_sin₁
|
||
|
||
-- IntervalIntegrable (log ∘ sin) volume 1 (π / 2)
|
||
apply ContinuousOn.intervalIntegrable
|
||
apply ContinuousOn.comp continuousOn_log continuousOn_sin
|
||
intro x hx
|
||
rw [Set.uIcc_of_le, Set.mem_Icc] at hx
|
||
have : 0 < sin x := by
|
||
apply Real.sin_pos_of_pos_of_lt_pi
|
||
· calc 0
|
||
_ < 1 := Real.zero_lt_one
|
||
_ ≤ x := hx.1
|
||
· calc x
|
||
_ ≤ π / 2 := hx.2
|
||
_ < π := div_two_lt_of_pos pi_pos
|
||
by_contra h₁x
|
||
simp at h₁x
|
||
rw [h₁x] at this
|
||
simp at this
|
||
exact one_le_pi_div_two
|
||
|
||
theorem intervalIntegrable_log_sin : IntervalIntegrable (log ∘ sin) volume 0 π := by
|
||
apply IntervalIntegrable.trans (b := π / 2)
|
||
exact intervalIntegrable_log_sin₂
|
||
-- IntervalIntegrable (log ∘ sin) volume (π / 2) π
|
||
let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ π
|
||
simp at A
|
||
let B := IntervalIntegrable.symm A
|
||
have : π - π / 2 = π / 2 := by linarith
|
||
rwa [this] at B
|
||
|
||
theorem intervalIntegrable_log_cos : IntervalIntegrable (log ∘ cos) volume 0 (π / 2) := by
|
||
let A := IntervalIntegrable.comp_sub_left intervalIntegrable_log_sin₂ (π / 2)
|
||
simp only [Function.comp_apply, sub_zero, sub_self] at A
|
||
simp_rw [sin_pi_div_two_sub] at A
|
||
have : (fun x => log (cos x)) = log ∘ cos := rfl
|
||
apply IntervalIntegrable.symm
|
||
rwa [← this]
|
||
|
||
|
||
theorem intervalIntegral.integral_congr_volume
|
||
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||
{f : ℝ → E}
|
||
{g : ℝ → E}
|
||
{a : ℝ}
|
||
{b : ℝ}
|
||
(h₀ : a < b)
|
||
(h₁ : Set.EqOn f g (Set.Ioo a b)) :
|
||
∫ (x : ℝ) in a..b, f x = ∫ (x : ℝ) in a..b, g x := by
|
||
|
||
apply intervalIntegral.integral_congr_ae
|
||
rw [MeasureTheory.ae_iff]
|
||
apply nonpos_iff_eq_zero.1
|
||
push_neg
|
||
have : {x | x ∈ Ι a b ∧ f x ≠ g x} ⊆ {b} := by
|
||
intro x hx
|
||
have t₂ : x ∈ Ι a b \ Set.Ioo a b := by
|
||
constructor
|
||
· exact hx.1
|
||
· by_contra H
|
||
exact hx.2 (h₁ H)
|
||
rw [Set.uIoc_of_le (le_of_lt h₀)] at t₂
|
||
rw [Set.Ioc_diff_Ioo_same h₀] at t₂
|
||
assumption
|
||
calc volume {a_1 | a_1 ∈ Ι a b ∧ f a_1 ≠ g a_1}
|
||
_ ≤ volume {b} := volume.mono this
|
||
_ = 0 := volume_singleton
|
||
|
||
|
||
theorem IntervalIntegrable.integral_congr_Ioo
|
||
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||
{f g : ℝ → E}
|
||
{a b : ℝ}
|
||
(hab : a ≤ b)
|
||
(hfg : Set.EqOn f g (Set.Ioo a b)) :
|
||
IntervalIntegrable f volume a b ↔ IntervalIntegrable g volume a b := by
|
||
|
||
rw [intervalIntegrable_iff_integrableOn_Ioo_of_le hab]
|
||
rw [MeasureTheory.integrableOn_congr_fun hfg measurableSet_Ioo]
|
||
rw [← intervalIntegrable_iff_integrableOn_Ioo_of_le hab]
|
||
|
||
|
||
|
||
lemma integral_log_sin₀ : ∫ (x : ℝ) in (0)..π, log (sin x) = 2 * ∫ (x : ℝ) in (0)..(π / 2), log (sin x) := by
|
||
rw [← intervalIntegral.integral_add_adjacent_intervals (a := 0) (b := π / 2) (c := π)]
|
||
conv =>
|
||
left
|
||
right
|
||
arg 1
|
||
intro x
|
||
rw [← sin_pi_sub]
|
||
rw [intervalIntegral.integral_comp_sub_left (fun x ↦ log (sin x)) π]
|
||
have : π - π / 2 = π / 2 := by linarith
|
||
rw [this]
|
||
simp
|
||
ring
|
||
-- IntervalIntegrable (fun x => log (sin x)) volume 0 (π / 2)
|
||
exact intervalIntegrable_log_sin₂
|
||
-- IntervalIntegrable (fun x => log (sin x)) volume (π / 2) π
|
||
apply intervalIntegrable_log_sin.mono_set
|
||
rw [Set.uIcc_of_le, Set.uIcc_of_le]
|
||
apply Set.Icc_subset_Icc_left
|
||
linarith [pi_pos]
|
||
linarith [pi_pos]
|
||
linarith [pi_pos]
|
||
|
||
|
||
lemma integral_log_sin₁ : ∫ (x : ℝ) in (0)..(π / 2), log (sin x) = -log 2 * π/2 := by
|
||
|
||
have t₁ {x : ℝ} : x ∈ Set.Ioo 0 (π / 2) → log (sin (2 * x)) = log 2 + log (sin x) + log (cos x) := by
|
||
intro hx
|
||
simp at hx
|
||
|
||
rw [sin_two_mul x, log_mul, log_mul]
|
||
exact Ne.symm (NeZero.ne' 2)
|
||
-- sin x ≠ 0
|
||
apply (fun a => Ne.symm (ne_of_lt a))
|
||
apply sin_pos_of_mem_Ioo
|
||
constructor
|
||
· exact hx.1
|
||
· linarith [pi_pos, hx.2]
|
||
-- 2 * sin x ≠ 0
|
||
simp
|
||
apply (fun a => Ne.symm (ne_of_lt a))
|
||
apply sin_pos_of_mem_Ioo
|
||
constructor
|
||
· exact hx.1
|
||
· linarith [pi_pos, hx.2]
|
||
-- cos x ≠ 0
|
||
apply (fun a => Ne.symm (ne_of_lt a))
|
||
apply cos_pos_of_mem_Ioo
|
||
constructor
|
||
· linarith [pi_pos, hx.1]
|
||
· exact hx.2
|
||
|
||
have t₂ : Set.EqOn (fun y ↦ log (sin y)) (fun y ↦ log (sin (2 * y)) - log 2 - log (cos y)) (Set.Ioo 0 (π / 2)) := by
|
||
intro x hx
|
||
simp
|
||
rw [t₁ hx]
|
||
ring
|
||
|
||
rw [intervalIntegral.integral_congr_volume _ t₂]
|
||
rw [intervalIntegral.integral_sub, intervalIntegral.integral_sub]
|
||
rw [intervalIntegral.integral_const]
|
||
rw [intervalIntegral.integral_comp_mul_left (c := 2) (f := fun x ↦ log (sin x))]
|
||
simp
|
||
have : 2 * (π / 2) = π := by linarith
|
||
rw [this]
|
||
rw [integral_log_sin₀]
|
||
|
||
have : ∫ (x : ℝ) in (0)..(π / 2), log (sin x) = ∫ (x : ℝ) in (0)..(π / 2), log (cos x) := by
|
||
conv =>
|
||
right
|
||
arg 1
|
||
intro x
|
||
rw [← sin_pi_div_two_sub]
|
||
rw [intervalIntegral.integral_comp_sub_left (fun x ↦ log (sin x)) (π / 2)]
|
||
simp
|
||
rw [← this]
|
||
simp
|
||
linarith
|
||
|
||
exact Ne.symm (NeZero.ne' 2)
|
||
-- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2)
|
||
let A := intervalIntegrable_log_sin.comp_mul_left 2
|
||
simp at A
|
||
assumption
|
||
-- IntervalIntegrable (fun x => log 2) volume 0 (π / 2)
|
||
simp
|
||
-- IntervalIntegrable (fun x => log (sin (2 * x)) - log 2) volume 0 (π / 2)
|
||
apply IntervalIntegrable.sub
|
||
-- -- IntervalIntegrable (fun x => log (sin (2 * x))) volume 0 (π / 2)
|
||
let A := intervalIntegrable_log_sin.comp_mul_left 2
|
||
simp at A
|
||
assumption
|
||
-- -- IntervalIntegrable (fun x => log 2) volume 0 (π / 2)
|
||
simp
|
||
-- -- IntervalIntegrable (fun x => log (cos x)) volume 0 (π / 2)
|
||
exact intervalIntegrable_log_cos
|
||
--
|
||
linarith [pi_pos]
|
||
|
||
|
||
lemma integral_log_sin₂ : ∫ (x : ℝ) in (0)..π, log (sin x) = -log 2 * π := by
|
||
rw [integral_log_sin₀, integral_log_sin₁]
|
||
ring
|