nevanlinna/Nevanlinna/stronglyMeromorphicOn.lean
Stefan Kebekus 6fb627dad3 working...
2024-11-21 17:15:32 +01:00

174 lines
4.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicAt
import Mathlib.Algebra.BigOperators.Finprod
open Topology
/- Strongly MeromorphicOn -/
def StronglyMeromorphicOn
(f : )
(U : Set ) :=
∀ z ∈ U, StronglyMeromorphicAt f z
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicOn.meromorphicOn
{f : }
{U : Set }
(hf : StronglyMeromorphicOn f U) :
MeromorphicOn f U := by
intro z hz
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analytic
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
∀ z ∈ U, AnalyticAt f z := by
intro z hz
apply StronglyMeromorphicAt.analytic
exact h₂f z hz
exact h₁f z hz
/- Analytic functions are strongly meromorphic -/
theorem AnalyticOn.stronglyMeromorphicOn
{f : }
{U : Set }
(h₁f : AnalyticOnNhd f U) :
StronglyMeromorphicOn f U := by
intro z hz
apply AnalyticAt.stronglyMeromorphicAt
exact h₁f z hz
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
:= by
intro z
by_cases hz : z ∈ U
· exact (hf z hz).makeStronglyMeromorphicAt z
· exact f z
theorem makeStronglyMeromorphicOn_changeDiscrete
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
apply Filter.eventually_iff_exists_mem.2
let A := (hf z₀ hz₀).eventually_analyticAt
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
use V
constructor
· assumption
· intro v hv
unfold MeromorphicOn.makeStronglyMeromorphicOn
by_cases h₂v : v ∈ U
· simp [h₂v]
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id]
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
· simp [h₂v]
theorem analyticAt_ratlPolynomial₁
{z : }
(d : )
(P : Finset ) :
z ∉ P → AnalyticAt (∏ u ∈ P, fun z ↦ (z - u) ^ d u) z := by
intro hz
rw [Finset.prod_fn]
apply Finset.analyticAt_prod
intro u hu
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
rw [sub_ne_zero, ne_comm]
exact ne_of_mem_of_not_mem hu hz
theorem stronglyMeromorphicOn_ratlPolynomial₂
{U : Set }
(d : )
(P : Finset ) :
StronglyMeromorphicOn (∏ u ∈ P, fun z ↦ (z - u) ^ d u) U := by
intro z hz
by_cases h₂z : z ∈ P
· rw [← Finset.mul_prod_erase P _ h₂z]
right
use d z
use ∏ x ∈ P.erase z, fun z => (z - x) ^ d x
constructor
· have : z ∉ P.erase z := Finset.not_mem_erase z P
apply analyticAt_ratlPolynomial₁ d (P.erase z) this
· constructor
· simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro u hu
apply zpow_ne_zero
rw [sub_ne_zero]
by_contra hCon
rw [hCon] at hu
let A := Finset.not_mem_erase u P
tauto
· exact Filter.Eventually.of_forall (congrFun rfl)
· apply AnalyticAt.stronglyMeromorphicAt
exact analyticAt_ratlPolynomial₁ d P (z := z) h₂z
theorem stronglyMeromorphicOn_ratlPolynomial₃
{U : Set }
(d : ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite
· rw [finprod_eq_prod _ hd]
apply stronglyMeromorphicOn_ratlPolynomial₂ (U := U) d hd.toFinset
· rw [finprod_of_infinite_mulSupport hd]
apply AnalyticOn.stronglyMeromorphicOn
apply analyticOnNhd_const
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
{U : Set }
(d : )
(hd : Set.Finite d.support) :
(stronglyMeromorphicOn_ratlPolynomial₃ d (U := U)).meromorphicOn.divisor = d := by
sorry
theorem makeStronglyMeromorphicOn_changeDiscrete'
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
apply Mnhds
let A := makeStronglyMeromorphicOn_changeDiscrete hf hz₀
apply Filter.EventuallyEq.trans A
exact m₂ (hf z₀ hz₀)
unfold MeromorphicOn.makeStronglyMeromorphicOn
simp [hz₀]
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
intro z₀ hz₀
rw [stronglyMeromorphicAt_congr (makeStronglyMeromorphicOn_changeDiscrete' hf hz₀)]
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z₀ hz₀)