nevanlinna/Nevanlinna/bilinear.lean

74 lines
2.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--import Mathlib.Algebra.BigOperators.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2
open BigOperators
open Finset
open scoped TensorProduct
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
lemma OrthonormalBasis.sum_repr'
{𝕜 : Type*} [RCLike 𝕜]
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 E)
(v : E) :
v = ∑ i, ⟪b i, v⟫_𝕜 • (b i) := by
nth_rw 1 [← (b.sum_repr v)]
simp_rw [b.repr_apply_apply v]
noncomputable def InnerProductSpace.canonicalTensor
(E : Type u_2) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
: E ⊗[] E := by
let v := stdOrthonormalBasis E
exact ∑ i, (v i) ⊗ₜ[] (v i)
theorem InnerProductSpace.InvariantTensor
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
(v₂ : OrthonormalBasis (Fin (FiniteDimensional.finrank E)) E)
: InnerProductSpace.canonicalTensor E = ∑ i, (v₂ i) ⊗ₜ[] (v₂ i) := by
unfold InnerProductSpace.canonicalTensor
let v₁ := stdOrthonormalBasis E
simp
conv =>
right
arg 2
intro i
rw [v₁.sum_repr' (v₂ i)]
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
conv =>
right
rw [Finset.sum_comm]
arg 2
intro y
rw [Finset.sum_comm]
arg 2
intro x
rw [← Finset.sum_smul]
arg 1
arg 2
intro i
rw [← real_inner_comm (v₁ x)]
simp_rw [OrthonormalBasis.sum_inner_mul_inner v₂]
have xx {r₀ : Fin (FiniteDimensional.finrank E)} : ∀ r₁ : Fin (FiniteDimensional.finrank E), r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ • v₁ r₀ ⊗ₜ[] v₁ r₁ = 0 := by
intro r₁ hr₁
rw [orthonormal_iff_ite.1 v₁.orthonormal]
simp
tauto
simp_rw [Fintype.sum_eq_single _ xx]
simp_rw [orthonormal_iff_ite.1 v₁.orthonormal]
simp