nevanlinna/Nevanlinna/harmonicAt_meanValue.lean
2024-08-23 09:26:58 +02:00

132 lines
4.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.NormedSpace.Pointwise
import Mathlib.Topology.MetricSpace.Thickening
import Mathlib.Analysis.Complex.CauchyIntegral
import Nevanlinna.holomorphic_examples
theorem harmonic_meanValue
{f : }
{z : }
(ρ R : )
(hR : 0 < R)
(hρ : R < ρ)
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) :
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
:= by
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf
have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by
intro x hx
exact gt_trans hρ hx
have reg₀F : DifferentiableOn F (Metric.ball z ρ) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hx
have reg₁F : DifferentiableOn F (Metric.ball z R) := by
intro x hx
apply DifferentiableAt.differentiableWithinAt
apply HolomorphicAt.differentiableAt (h₁F x _)
exact hrρ hx
have : (∮ (x : ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by
let s : Set := ∅
let hs : s.Countable := Set.countable_empty
let _ : := 0
have hw : (z : ) ∈ Metric.ball z R := Metric.mem_ball_self hR
have hc : ContinuousOn F (Metric.closedBall z R) := by
apply reg₀F.continuousOn.mono
intro x hx
simp at hx
simp
linarith
have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt F x := by
intro x hx
let A := reg₁F x hx.1
apply A.differentiableAt
apply (IsOpen.mem_nhds_iff ?hs).mpr
exact hx.1
exact Metric.isOpen_ball
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
simp at CIF
assumption
unfold circleIntegral at this
simp_rw [deriv_circleMap] at this
have t₁ {θ : } : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by
rw [← smul_assoc]
congr 1
simp
nth_rw 1 [mul_comm]
rw [← mul_assoc]
simp
apply inv_mul_cancel₀
apply circleMap_ne_center
exact Ne.symm (ne_of_lt hR)
have t'₁ {θ : } : circleMap 0 R θ = circleMap z R θ - z := by
exact Eq.symm (circleMap_sub_center z R θ)
simp_rw [← t'₁, t₁] at this
simp at this
have t₂ : Complex.reCLM (-Complex.I * (Complex.I * ∫ (x : ) in (0)..2 * Real.pi, F (circleMap z R x))) = Complex.reCLM (-Complex.I * (2 * ↑Real.pi * Complex.I * F z)) := by
rw [this]
simp at t₂
have xx {x : } : (F (circleMap z R x)).re = f (circleMap z R x) := by
rw [← h₂F]
simp
simp
rw [Complex.dist_eq]
rw [circleMap_sub_center]
simp
rwa [abs_of_nonneg (le_of_lt hR)]
have x₁ {z : } : z.re = Complex.reCLM z := by rfl
rw [x₁] at t₂
rw [← ContinuousLinearMap.intervalIntegral_comp_comm] at t₂
simp at t₂
simp_rw [xx] at t₂
have x₁ {z : } : z.re = Complex.reCLM z := by rfl
rw [x₁] at t₂
have : Complex.reCLM (F z) = f z := by
apply h₂F
simp
exact gt_trans hρ hR
rw [this] at t₂
exact t₂
-- IntervalIntegrable (fun x => F (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
apply ContinuousOn.intervalIntegrable
apply ContinuousOn.comp reg₀F.continuousOn _
intro θ _
simp
rw [Complex.dist_eq, circleMap_sub_center]
simp
rwa [abs_of_nonneg (le_of_lt hR)]
apply Continuous.continuousOn
exact continuous_circleMap z R
/- Probably not optimal yet. We want a statements that requires harmonicity in
the interior and continuity on the closed ball.
-/
theorem harmonic_meanValue₁
{f : }
{z : }
(R : )
(hR : 0 < R)
(hf : ∀ x ∈ Metric.closedBall z R , HarmonicAt f x) :
(∫ (x : ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z := by
obtain ⟨e, h₁e, h₂e⟩ := IsCompact.exists_thickening_subset_open (isCompact_closedBall z R) (HarmonicAt_isOpen f) hf
rw [thickening_closedBall] at h₂e
apply harmonic_meanValue (e + R) R
assumption
norm_num
assumption
exact fun x a => h₂e a
assumption
linarith