103 lines
2.6 KiB
Plaintext
103 lines
2.6 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
noncomputable def MeromorphicOn.divisor
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : MeromorphicOn f U) :
|
||
Divisor U where
|
||
|
||
toFun := by
|
||
intro z
|
||
if hz : z ∈ U then
|
||
exact ((hf z hz).order.untop' 0 : ℤ)
|
||
else
|
||
exact 0
|
||
|
||
supportInU := by
|
||
intro z hz
|
||
simp at hz
|
||
by_contra h₂z
|
||
simp [h₂z] at hz
|
||
|
||
locallyFiniteInU := by
|
||
intro z hz
|
||
|
||
apply eventually_nhdsWithin_iff.2
|
||
rw [eventually_nhds_iff]
|
||
|
||
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
|
||
· rw [eventually_nhdsWithin_iff] at h
|
||
rw [eventually_nhds_iff] at h
|
||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
||
use N
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
by_cases h₃y : y ∈ U
|
||
· simp [h₃y]
|
||
right
|
||
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
|
||
rw [eventually_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use N ∩ {z}ᶜ
|
||
constructor
|
||
· intro x h₁x _
|
||
exact h₁N x h₁x.1 h₁x.2
|
||
· constructor
|
||
· exact IsOpen.inter h₂N isOpen_compl_singleton
|
||
· exact Set.mem_inter h₁y h₂y
|
||
· simp [h₃y]
|
||
· tauto
|
||
|
||
· let A := (hf z hz).eventually_analyticAt
|
||
let B := Filter.eventually_and.2 ⟨h, A⟩
|
||
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
|
||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
|
||
use N
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
by_cases h₃y : y ∈ U
|
||
· simp [h₃y]
|
||
left
|
||
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
|
||
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
|
||
let C := (h₁N y h₁y h₂y).1
|
||
let E := D C
|
||
rw [E]
|
||
simp
|
||
· simp [h₃y]
|
||
· tauto
|
||
|
||
|
||
theorem MeromorphicOn.divisor_def₁
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz : z ∈ U) :
|
||
hf.divisor z = ((hf z hz).order.untop' 0 : ℤ) := by
|
||
unfold MeromorphicOn.divisor
|
||
simp [hz]
|
||
|
||
|
||
theorem MeromorphicOn.divisor_def₂
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz : z ∈ U)
|
||
(h₂f : (hf z hz).order ≠ ⊤) :
|
||
hf.divisor z = (hf z hz).order.untop h₂f := by
|
||
unfold MeromorphicOn.divisor
|
||
simp [hz]
|
||
rw [WithTop.untop'_eq_iff]
|
||
left
|
||
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|