48 lines
1.5 KiB
Plaintext
48 lines
1.5 KiB
Plaintext
import Mathlib.Data.Fin.Tuple.Basic
|
||
import Mathlib.Analysis.Complex.Basic
|
||
import Mathlib.Analysis.Complex.TaylorSeries
|
||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||
import Nevanlinna.cauchyRiemann
|
||
import Nevanlinna.partialDeriv
|
||
|
||
|
||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||
intro f
|
||
let fx := Real.partialDeriv 1 f
|
||
let fxx := Real.partialDeriv 1 fx
|
||
let fy := Real.partialDeriv Complex.I f
|
||
let fyy := Real.partialDeriv Complex.I fy
|
||
exact fxx + fyy
|
||
|
||
|
||
def Harmonic (f : ℂ → ℂ) : Prop :=
|
||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||
|
||
|
||
theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic f := by
|
||
|
||
-- f is real C²
|
||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||
|
||
have fI_is_real_differentiable : Differentiable ℝ (Real.partialDeriv 1 f) := by
|
||
exact (partialDeriv_contDiff f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||
|
||
constructor
|
||
· -- f is two times real continuously differentiable
|
||
exact f_is_real_C2
|
||
|
||
· -- Laplace of f is zero
|
||
unfold Complex.laplace
|
||
rw [CauchyRiemann₄ h]
|
||
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||
rw [CauchyRiemann₄ h]
|
||
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
||
rw [← smul_assoc]
|
||
simp
|