593 lines
19 KiB
Plaintext
593 lines
19 KiB
Plaintext
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||
import Nevanlinna.complexHarmonic
|
||
import Nevanlinna.holomorphic
|
||
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||
|
||
|
||
theorem holomorphicAt_is_harmonicAt
|
||
{f : ℂ → F₁}
|
||
{z : ℂ}
|
||
(hf : HolomorphicAt f z) :
|
||
HarmonicAt f z := by
|
||
|
||
let t := {x | HolomorphicAt f x}
|
||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||
have hz : z ∈ t := by exact hf
|
||
|
||
constructor
|
||
· -- ContDiffAt ℝ 2 f z
|
||
exact HolomorphicAt_contDiffAt hf
|
||
|
||
· -- Δ f =ᶠ[nhds z] 0
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use t
|
||
constructor
|
||
· exact IsOpen.mem_nhds ht hz
|
||
· intro w hw
|
||
unfold Complex.laplace
|
||
simp
|
||
rw [partialDeriv_eventuallyEq ℝ (CauchyRiemann'₆ hw) Complex.I]
|
||
rw [partialDeriv_smul'₂]
|
||
simp
|
||
|
||
rw [partialDeriv_commAt (HolomorphicAt_contDiffAt hw) Complex.I 1]
|
||
rw [partialDeriv_eventuallyEq ℝ (CauchyRiemann'₆ hw) 1]
|
||
rw [partialDeriv_smul'₂]
|
||
simp
|
||
|
||
rw [← smul_assoc]
|
||
simp
|
||
|
||
|
||
theorem re_of_holomorphicAt_is_harmonicAr
|
||
{f : ℂ → ℂ}
|
||
{z : ℂ}
|
||
(h : HolomorphicAt f z) :
|
||
HarmonicAt (Complex.reCLM ∘ f) z := by
|
||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||
exact holomorphicAt_is_harmonicAt h
|
||
|
||
|
||
theorem im_of_holomorphicAt_is_harmonicAt
|
||
{f : ℂ → ℂ}
|
||
{z : ℂ}
|
||
(h : HolomorphicAt f z) :
|
||
HarmonicAt (Complex.imCLM ∘ f) z := by
|
||
apply harmonicAt_comp_CLM_is_harmonicAt
|
||
exact holomorphicAt_is_harmonicAt h
|
||
|
||
|
||
theorem antiholomorphicAt_is_harmonicAt
|
||
{f : ℂ → ℂ}
|
||
{z : ℂ}
|
||
(h : HolomorphicAt f z) :
|
||
HarmonicAt (Complex.conjCLE ∘ f) z := by
|
||
apply harmonicAt_iff_comp_CLE_is_harmonicAt.1
|
||
exact holomorphicAt_is_harmonicAt h
|
||
|
||
|
||
theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
||
{f : ℂ → ℂ}
|
||
{z : ℂ}
|
||
(h₁f : HolomorphicAt f z)
|
||
(h₂f : f z ≠ 0) :
|
||
HarmonicAt (Real.log ∘ Complex.normSq ∘ f) z := by
|
||
|
||
-- For later use
|
||
have slitPlaneLemma {z : ℂ} (hz : z ≠ 0) : z ∈ Complex.slitPlane ∨ -z ∈ Complex.slitPlane := by
|
||
rw [Complex.mem_slitPlane_iff, Complex.mem_slitPlane_iff]
|
||
simp at hz
|
||
rw [Complex.ext_iff] at hz
|
||
push_neg at hz
|
||
simp at hz
|
||
simp
|
||
by_contra contra
|
||
push_neg at contra
|
||
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
|
||
|
||
-- First prove the theorem for functions with image in the slitPlane
|
||
have lem₁ : ∀ g : ℂ → ℂ, (HolomorphicAt g z) → (g z ≠ 0) → (g z ∈ Complex.slitPlane) → HarmonicAt (Real.log ∘ Complex.normSq ∘ g) z := by
|
||
intro g h₁g h₂g h₃g
|
||
|
||
-- Rewrite the log |g|² as Complex.log (g * gc)
|
||
suffices hyp : HarmonicAt (Complex.log ∘ ((Complex.conjCLE ∘ g) * g)) z from by
|
||
have : Real.log ∘ Complex.normSq ∘ g = Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g := by
|
||
funext x
|
||
simp
|
||
rw [this]
|
||
|
||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ g = Complex.log ∘ ((Complex.conjCLE ∘ g) * g) := by
|
||
funext x
|
||
simp
|
||
rw [Complex.ofReal_log]
|
||
rw [Complex.normSq_eq_conj_mul_self]
|
||
exact Complex.normSq_nonneg (g x)
|
||
rw [← this] at hyp
|
||
apply harmonicAt_comp_CLM_is_harmonicAt hyp
|
||
|
||
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
|
||
-- This uses the assumption that g z is in Complex.slitPlane
|
||
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.log ∘ Complex.conjCLE ∘ g + Complex.log ∘ g) := by
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
|
||
constructor
|
||
· apply ContinuousAt.preimage_mem_nhds
|
||
· exact (HolomorphicAt_differentiableAt h₁g).continuousAt
|
||
· apply IsOpen.mem_nhds
|
||
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
|
||
constructor
|
||
· exact h₃g
|
||
· exact h₂g
|
||
· intro x hx
|
||
simp
|
||
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
|
||
rw [Complex.arg_conj]
|
||
simp [Complex.slitPlane_arg_ne_pi hx.1]
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
simp
|
||
apply hx.2
|
||
|
||
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
|
||
-- This uses the assumption that g z is in Complex.slitPlane
|
||
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.conjCLE ∘ Complex.log ∘ g + Complex.log ∘ g) := by
|
||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
|
||
constructor
|
||
· apply ContinuousAt.preimage_mem_nhds
|
||
· exact (HolomorphicAt_differentiableAt h₁g).continuousAt
|
||
· apply IsOpen.mem_nhds
|
||
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
|
||
constructor
|
||
· exact h₃g
|
||
· exact h₂g
|
||
· intro x hx
|
||
simp
|
||
rw [← Complex.log_conj]
|
||
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
|
||
rw [Complex.arg_conj]
|
||
simp [Complex.slitPlane_arg_ne_pi hx.1]
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
simp
|
||
apply hx.2
|
||
apply Complex.slitPlane_arg_ne_pi hx.1
|
||
|
||
rw [HarmonicAt_eventuallyEq this]
|
||
apply harmonicAt_add_harmonicAt_is_harmonicAt
|
||
· rw [← harmonicAt_iff_comp_CLE_is_harmonicAt]
|
||
apply holomorphicAt_is_harmonicAt
|
||
apply HolomorphicAt_comp
|
||
use Complex.slitPlane
|
||
constructor
|
||
· apply IsOpen.mem_nhds
|
||
exact Complex.isOpen_slitPlane
|
||
assumption
|
||
· exact fun z a => Complex.differentiableAt_log a
|
||
exact h₁g
|
||
· apply holomorphicAt_is_harmonicAt
|
||
apply HolomorphicAt_comp
|
||
use Complex.slitPlane
|
||
constructor
|
||
· apply IsOpen.mem_nhds
|
||
exact Complex.isOpen_slitPlane
|
||
assumption
|
||
· exact fun z a => Complex.differentiableAt_log a
|
||
exact h₁g
|
||
|
||
by_cases h₃f : f z ∈ Complex.slitPlane
|
||
· exact lem₁ f h₁f h₂f h₃f
|
||
· have : Complex.normSq ∘ f = Complex.normSq ∘ (-f) := by funext; simp
|
||
rw [this]
|
||
apply lem₁ (-f)
|
||
· exact HolomorphicAt_neg h₁f
|
||
· simpa
|
||
· exact (slitPlaneLemma h₂f).resolve_left h₃f
|
||
|
||
|
||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||
Harmonic f := by
|
||
|
||
-- f is real C²
|
||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||
|
||
have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by
|
||
exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||
|
||
constructor
|
||
· -- f is two times real continuously differentiable
|
||
exact f_is_real_C2
|
||
|
||
· -- Laplace of f is zero
|
||
unfold Complex.laplace
|
||
rw [CauchyRiemann₄ h]
|
||
|
||
-- This lemma says that partial derivatives commute with complex scalar
|
||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||
intro v s g hg
|
||
|
||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||
-- horrible, there must be better ways to do that.
|
||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||
{
|
||
toFun := fun x ↦ s • x
|
||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||
cont := continuous_const_smul s
|
||
}
|
||
|
||
-- Bring the goal into a form that is recognized by
|
||
-- partialDeriv_compContLin.
|
||
have : s • g = sMuls ∘ g := by rfl
|
||
rw [this]
|
||
|
||
rw [partialDeriv_compContLin ℝ hg]
|
||
rfl
|
||
|
||
rw [this]
|
||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||
rw [CauchyRiemann₄ h]
|
||
rw [this]
|
||
rw [← smul_assoc]
|
||
simp
|
||
|
||
-- Subgoals coming from the application of 'this'
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
|
||
|
||
theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpen s) (h : DifferentiableOn ℂ f s) :
|
||
HarmonicOn f s := by
|
||
|
||
-- f is real C²
|
||
have f_is_real_C2 : ContDiffOn ℝ 2 f s :=
|
||
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h hs)
|
||
|
||
constructor
|
||
· -- f is two times real continuously differentiable
|
||
exact f_is_real_C2
|
||
|
||
· -- Laplace of f is zero
|
||
unfold Complex.laplace
|
||
intro z hz
|
||
simp
|
||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· intro x hx
|
||
simp
|
||
apply CauchyRiemann₅
|
||
apply DifferentiableOn.differentiableAt h
|
||
exact IsOpen.mem_nhds hs hx
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [partialDeriv_eventuallyEq ℝ this Complex.I]
|
||
rw [partialDeriv_smul'₂]
|
||
|
||
simp
|
||
rw [partialDeriv_commOn hs f_is_real_C2 Complex.I 1 z hz]
|
||
|
||
have : partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· intro x hx
|
||
simp
|
||
apply CauchyRiemann₅
|
||
apply DifferentiableOn.differentiableAt h
|
||
exact IsOpen.mem_nhds hs hx
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [partialDeriv_eventuallyEq ℝ this 1]
|
||
rw [partialDeriv_smul'₂]
|
||
simp
|
||
rw [← smul_assoc]
|
||
simp
|
||
|
||
|
||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.reCLM ∘ f) := by
|
||
apply harmonic_comp_CLM_is_harmonic
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.imCLM ∘ f) := by
|
||
apply harmonic_comp_CLM_is_harmonic
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.conjCLE ∘ f) := by
|
||
apply harmonic_iff_comp_CLE_is_harmonic.1
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem log_normSq_of_holomorphicOn_is_harmonicOn'
|
||
{f : ℂ → ℂ}
|
||
{s : Set ℂ}
|
||
(hs : IsOpen s)
|
||
(h₁ : DifferentiableOn ℂ f s)
|
||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||
|
||
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
||
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
||
|
||
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||
funext z
|
||
simp
|
||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||
rw [Complex.normSq_eq_conj_mul_self]
|
||
rw [this]
|
||
exact hyp
|
||
|
||
|
||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||
-- THIS IS WHERE WE USE h₃
|
||
have : ∀ z ∈ s, (Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f)) z = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) z := by
|
||
intro z hz
|
||
unfold Function.comp
|
||
simp
|
||
rw [Complex.log_mul_eq_add_log_iff]
|
||
|
||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||
rw [Complex.arg_conj]
|
||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||
simp
|
||
tauto
|
||
rw [this]
|
||
simp
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||
exact h₂ z hz
|
||
|
||
rw [HarmonicOn_congr hs this]
|
||
simp
|
||
|
||
apply harmonicOn_add_harmonicOn_is_harmonicOn hs
|
||
|
||
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
||
rfl
|
||
rw [this]
|
||
|
||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
||
intro z hz
|
||
unfold Function.comp
|
||
rw [Complex.log_conj]
|
||
rfl
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||
rw [HarmonicOn_congr hs this]
|
||
|
||
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
||
|
||
apply holomorphicOn_is_harmonicOn
|
||
exact hs
|
||
|
||
intro z hz
|
||
apply DifferentiableAt.differentiableWithinAt
|
||
apply DifferentiableAt.comp
|
||
|
||
|
||
|
||
exact Complex.differentiableAt_log (h₃ z hz)
|
||
apply DifferentiableOn.differentiableAt h₁ -- (h₁ z hz)
|
||
exact IsOpen.mem_nhds hs hz
|
||
exact hs
|
||
|
||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||
apply holomorphicOn_is_harmonicOn hs
|
||
exact DifferentiableOn.clog h₁ h₃
|
||
|
||
|
||
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||
{f : ℂ → ℂ}
|
||
{s : Set ℂ}
|
||
(hs : IsOpen s)
|
||
(h₁ : DifferentiableOn ℂ f s)
|
||
(h₂ : ∀ z ∈ s, f z ≠ 0) :
|
||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||
|
||
have slitPlaneLemma {z : ℂ} (hz : z ≠ 0) : z ∈ Complex.slitPlane ∨ -z ∈ Complex.slitPlane := by
|
||
rw [Complex.mem_slitPlane_iff]
|
||
rw [Complex.mem_slitPlane_iff]
|
||
simp at hz
|
||
rw [Complex.ext_iff] at hz
|
||
push_neg at hz
|
||
simp at hz
|
||
simp
|
||
by_contra contra
|
||
push_neg at contra
|
||
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
|
||
|
||
let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s
|
||
|
||
have hs₁ : IsOpen s₁ := by
|
||
let A := DifferentiableOn.continuousOn h₁
|
||
let B := continuousOn_iff'.1 A
|
||
obtain ⟨u, hu₁, hu₂⟩ := B Complex.slitPlane Complex.isOpen_slitPlane
|
||
have : u ∩ s = s₁ := by
|
||
rw [← hu₂]
|
||
tauto
|
||
rw [← this]
|
||
apply IsOpen.inter hu₁ hs
|
||
|
||
have harm₁ : HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s₁ := by
|
||
apply log_normSq_of_holomorphicOn_is_harmonicOn'
|
||
exact hs₁
|
||
apply DifferentiableOn.mono h₁ (Set.inter_subset_right {z | f z ∈ Complex.slitPlane} s)
|
||
-- ∀ z ∈ s₁, f z ≠ 0
|
||
exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz)
|
||
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
|
||
intro z hz
|
||
apply hz.1
|
||
|
||
let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s
|
||
|
||
have h₁' : DifferentiableOn ℂ (-f) s := by
|
||
rw [← differentiableOn_neg_iff]
|
||
simp
|
||
exact h₁
|
||
|
||
have hs₂ : IsOpen s₂ := by
|
||
let A := DifferentiableOn.continuousOn h₁'
|
||
let B := continuousOn_iff'.1 A
|
||
obtain ⟨u, hu₁, hu₂⟩ := B Complex.slitPlane Complex.isOpen_slitPlane
|
||
have : u ∩ s = s₂ := by
|
||
rw [← hu₂]
|
||
tauto
|
||
rw [← this]
|
||
apply IsOpen.inter hu₁ hs
|
||
|
||
have harm₂ : HarmonicOn (Real.log ∘ Complex.normSq ∘ (-f)) s₂ := by
|
||
apply log_normSq_of_holomorphicOn_is_harmonicOn'
|
||
exact hs₂
|
||
apply DifferentiableOn.mono h₁' (Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s)
|
||
-- ∀ z ∈ s₁, f z ≠ 0
|
||
intro z hz
|
||
simp
|
||
exact h₂ z (Set.mem_of_mem_inter_right hz)
|
||
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
|
||
intro z hz
|
||
apply hz.1
|
||
|
||
apply HarmonicOn_of_locally_HarmonicOn
|
||
intro z hz
|
||
by_cases hfz : f z ∈ Complex.slitPlane
|
||
· use s₁
|
||
constructor
|
||
· exact hs₁
|
||
· constructor
|
||
· tauto
|
||
· have : s₁ = s ∩ s₁ := by
|
||
apply Set.right_eq_inter.mpr
|
||
exact Set.inter_subset_right {z | f z ∈ Complex.slitPlane} s
|
||
rw [← this]
|
||
exact harm₁
|
||
· use s₂
|
||
constructor
|
||
· exact hs₂
|
||
· constructor
|
||
· constructor
|
||
· apply Or.resolve_left (slitPlaneLemma (h₂ z hz)) hfz
|
||
· exact hz
|
||
· have : s₂ = s ∩ s₂ := by
|
||
apply Set.right_eq_inter.mpr
|
||
exact Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s
|
||
rw [← this]
|
||
have : Real.log ∘ ⇑Complex.normSq ∘ f = Real.log ∘ ⇑Complex.normSq ∘ (-f) := by
|
||
funext x
|
||
simp
|
||
rw [this]
|
||
exact harm₂
|
||
|
||
|
||
theorem log_normSq_of_holomorphic_is_harmonic
|
||
{f : ℂ → ℂ}
|
||
(h₁ : Differentiable ℂ f)
|
||
(h₂ : ∀ z, f z ≠ 0)
|
||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
||
|
||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
||
|
||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||
funext z
|
||
simp
|
||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||
rw [Complex.normSq_eq_conj_mul_self]
|
||
rw [this]
|
||
exact hyp
|
||
|
||
|
||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||
-- THIS IS WHERE WE USE h₃
|
||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||
unfold Function.comp
|
||
funext z
|
||
simp
|
||
rw [Complex.log_mul_eq_add_log_iff]
|
||
|
||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||
rw [Complex.arg_conj]
|
||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||
simp
|
||
tauto
|
||
rw [this]
|
||
simp
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||
exact h₂ z
|
||
rw [this]
|
||
|
||
apply harmonic_add_harmonic_is_harmonic
|
||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
rw [Complex.log_conj]
|
||
rfl
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||
rw [this]
|
||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||
|
||
repeat
|
||
apply holomorphic_is_harmonic
|
||
intro z
|
||
apply DifferentiableAt.comp
|
||
exact Complex.differentiableAt_log (h₃ z)
|
||
exact h₁ z
|
||
|
||
|
||
theorem logabs_of_holomorphic_is_harmonic
|
||
{f : ℂ → ℂ}
|
||
(h₁ : Differentiable ℂ f)
|
||
(h₂ : ∀ z, f z ≠ 0)
|
||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||
|
||
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||
funext z
|
||
simp
|
||
unfold Complex.abs
|
||
simp
|
||
rw [Real.log_sqrt]
|
||
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||
exact Complex.normSq_nonneg (f z)
|
||
rw [this]
|
||
|
||
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
||
|
||
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|