94 lines
2.7 KiB
Plaintext
94 lines
2.7 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
|
||
/- Strongly MeromorphicAt -/
|
||
|
||
def StronglyMeromorphicAt
|
||
(f : ℂ → ℂ)
|
||
(z₀ : ℂ) :=
|
||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||
|
||
|
||
/- Strongly MeromorphicAt is Meromorphic -/
|
||
theorem StronglyMeromorphicAt.meromorphicAt
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : StronglyMeromorphicAt f z₀) :
|
||
MeromorphicAt f z₀ := by
|
||
rcases hf with h|h
|
||
· use 0; simp
|
||
rw [analyticAt_congr h]
|
||
exact analyticAt_const
|
||
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
|
||
rw [meromorphicAt_congr' h₃g]
|
||
apply MeromorphicAt.smul
|
||
apply MeromorphicAt.zpow
|
||
apply MeromorphicAt.sub
|
||
apply MeromorphicAt.id
|
||
apply MeromorphicAt.const
|
||
exact AnalyticAt.meromorphicAt h₁g
|
||
|
||
|
||
/- Strongly MeromorphicAt of non-negative order is analytic -/
|
||
theorem StronglyMeromorphicAt.analytic
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁f : StronglyMeromorphicAt f z₀)
|
||
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
|
||
AnalyticAt ℂ f z₀ := by
|
||
let h₁f' := h₁f
|
||
rcases h₁f' with h|h
|
||
· rw [analyticAt_congr h]
|
||
exact analyticAt_const
|
||
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
|
||
rw [analyticAt_congr h₃g]
|
||
|
||
have : h₁f.meromorphicAt.order = n := by
|
||
rw [MeromorphicAt.order_eq_int_iff]
|
||
use g
|
||
constructor
|
||
· exact h₁g
|
||
· constructor
|
||
· exact h₂g
|
||
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
|
||
rw [this] at h₂f
|
||
apply AnalyticAt.smul
|
||
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
|
||
apply AnalyticAt.pow
|
||
apply AnalyticAt.sub
|
||
apply analyticAt_id -- Warning: want apply AnalyticAt.id
|
||
apply analyticAt_const -- Warning: want AnalyticAt.const
|
||
exact h₁g
|
||
|
||
|
||
/- Make strongly MeromorphicAt -/
|
||
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
ℂ → ℂ := by
|
||
by_cases h₂f : hf.order = 0
|
||
· have : (0 : WithTop ℤ) = (0 : ℤ) := rfl
|
||
rw [this, hf.order_eq_int_iff] at h₂f
|
||
exact Classical.choose h₂f
|
||
· exact 0
|
||
|
||
|
||
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
StronglyMeromorphicAt hf.makeStronglyMeromorphic z₀ := by
|
||
|
||
sorry
|
||
|
||
|
||
theorem makeStronglyMeromorphic_eventuallyEq
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicAt f z₀) :
|
||
∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = hf.makeStronglyMeromorphicAt z := by
|
||
sorry
|