nevanlinna/Nevanlinna/complexHarmonic.lean

142 lines
3.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Data.Fin.Tuple.Basic
import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Nevanlinna.cauchyRiemann
import Nevanlinna.partialDeriv
theorem CauchyRiemann₄ {f : } : (Differentiable f)
→ Real.partialDeriv Complex.I f = Complex.I • Real.partialDeriv 1 f := by
intro h
unfold Real.partialDeriv
conv =>
left
intro w
rw [DifferentiableAt.fderiv_restrictScalars (h w)]
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
rw [ContinuousLinearMap.map_smul_of_tower (fderiv f w) Complex.I 1]
conv =>
right
right
intro w
rw [DifferentiableAt.fderiv_restrictScalars (h w)]
noncomputable def Complex.laplace : () → () := by
intro f
let fx := Real.partialDeriv 1 f
let fxx := Real.partialDeriv 1 fx
let fy := Real.partialDeriv Complex.I f
let fyy := Real.partialDeriv Complex.I fy
exact fxx + fyy
def Harmonic (f : ) : Prop :=
(ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0)
lemma derivSymm (f : ) (hf : ContDiff 2 f) :
∀ z a b : , (fderiv (fun w => fderiv f w) z) a b = (fderiv (fun w => fderiv f w) z) b a := by
intro z a b
let f' := fderiv f
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
have h : Differentiable f := by
exact (contDiff_succ_iff_fderiv.1 hf).left
exact fun y => DifferentiableAt.hasFDerivAt (h y)
let f'' := (fderiv f' z)
have h₁ : HasFDerivAt f' f'' z := by
apply DifferentiableAt.hasFDerivAt
let A := (contDiff_succ_iff_fderiv.1 hf).right
let B := (contDiff_succ_iff_fderiv.1 A).left
simp at B
exact B z
let A := second_derivative_symmetric h₀ h₁ a b
dsimp [f'', f'] at A
apply A
lemma l₂ {f : } (hf : ContDiff 2 f) (z a b : ) :
fderiv (fderiv f) z b a = fderiv (fun w ↦ fderiv f w a) z b := by
rw [fderiv_clm_apply]
· simp
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
· simp
#check partialDeriv_contDiff
theorem holomorphic_is_harmonic {f : } (h : Differentiable f) :
Harmonic f := by
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h)
-- f is real differentiable
have f_is_real_differentiable : Differentiable f := by
exact (contDiff_succ_iff_fderiv.1 f_is_real_C2).left
have fI_is_real_differentiable : Differentiable (Real.partialDeriv 1 f) := by
let A := partialDeriv_contDiff f_is_real_C2 1
exact (contDiff_succ_iff_fderiv.1 A).left
-- f' is real C¹
have f'_is_real_C1 : ContDiff 1 (fderiv f) :=
(contDiff_succ_iff_fderiv.1 f_is_real_C2).right
-- f' is real differentiable
have f'_is_differentiable : Differentiable (fderiv f) :=
(contDiff_succ_iff_fderiv.1 f'_is_real_C1).left
-- Partial derivative in direction 1
let f_1 := fun w ↦ (fderiv f w) 1
-- Partial derivative in direction I
let f_I := fun w ↦ (fderiv f w) Complex.I
constructor
· -- f is two times real continuously differentiable
exact f_is_real_C2
· -- Laplace of f is zero
intro z
unfold Complex.laplace
rw [CauchyRiemann₄ h]
rw [partialDeriv_smul fI_is_real_differentiable]
have t₂ : (fderiv f_1 z) Complex.I = (fderiv f_I z) 1 := by
let B := l₂ f_is_real_C2 z Complex.I 1
rw [← B]
let A := derivSymm f f_is_real_C2 z 1 Complex.I
rw [A]
let C := l₂ f_is_real_C2 z 1 Complex.I
rw [C]
simp
rw [t₂]
conv =>
left
right
arg 2
arg 1
arg 2
intro z
simp [f_I]
rw [CauchyRiemann₁ (h z)]
rw [t₁a]
simp
rw [← mul_assoc]
simp