641 lines
20 KiB
Plaintext
641 lines
20 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.codiscreteWithin
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.stronglyMeromorphicOn_ratlPolynomial
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
theorem MeromorphicOn.decompose₁
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : StronglyMeromorphicAt f z₀)
|
||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤)
|
||
(hz₀ : z₀ ∈ U) :
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (AnalyticAt ℂ g z₀)
|
||
∧ (g z₀ ≠ 0)
|
||
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
|
||
|
||
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
|
||
have h₁h₁ : MeromorphicOn h₁ U := by
|
||
apply MeromorphicOn.zpow
|
||
apply AnalyticOnNhd.meromorphicOn
|
||
apply AnalyticOnNhd.sub
|
||
exact analyticOnNhd_id
|
||
exact analyticOnNhd_const
|
||
let n : ℤ := (-h₁f.divisor z₀)
|
||
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
|
||
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
|
||
use 1
|
||
constructor
|
||
· apply analyticAt_const
|
||
· constructor
|
||
· simp
|
||
· apply eventually_nhdsWithin_of_forall
|
||
intro z hz
|
||
simp
|
||
|
||
let g₁ := f * h₁
|
||
have h₁g₁ : MeromorphicOn g₁ U := by
|
||
apply h₁f.mul h₁h₁
|
||
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
|
||
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
|
||
rw [h₂h₁]
|
||
unfold n
|
||
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
|
||
conv =>
|
||
left
|
||
left
|
||
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
|
||
have
|
||
(a b c : ℤ)
|
||
(h : a + b = c) :
|
||
(a : WithTop ℤ) + (b : WithTop ℤ) = (c : WithTop ℤ) := by
|
||
rw [← h]
|
||
simp
|
||
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
|
||
simp
|
||
ring
|
||
|
||
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
|
||
have h₂g : StronglyMeromorphicAt g z₀ := by
|
||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
|
||
have h₁g : MeromorphicOn g U := by
|
||
intro z hz
|
||
by_cases h₁z : z = z₀
|
||
· rw [h₁z]
|
||
apply h₂g.meromorphicAt
|
||
· apply (h₁g₁ z hz).congr
|
||
rw [eventuallyEq_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use {z₀}ᶜ
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
|
||
unfold g
|
||
rw [← A]
|
||
· constructor
|
||
· exact isOpen_compl_singleton
|
||
· exact h₁z
|
||
have h₃g : (h₁g z₀ hz₀).order = 0 := by
|
||
unfold g
|
||
let B := m₂ (h₁g₁ z₀ hz₀)
|
||
let A := (h₁g₁ z₀ hz₀).order_congr B
|
||
rw [← A]
|
||
rw [h₂g₁]
|
||
have h₄g : AnalyticAt ℂ g z₀ := by
|
||
apply h₂g.analytic
|
||
rw [h₃g]
|
||
|
||
use g
|
||
constructor
|
||
· exact h₁g
|
||
· constructor
|
||
· exact h₄g
|
||
· constructor
|
||
· exact (h₂g.order_eq_zero_iff).mp h₃g
|
||
· funext z
|
||
by_cases hz : z = z₀
|
||
· rw [hz]
|
||
simp
|
||
by_cases h : h₁f.divisor z₀ = 0
|
||
· simp [h]
|
||
have h₂h₁ : h₁ = 1 := by
|
||
funext w
|
||
unfold h₁
|
||
simp [h]
|
||
have h₃g₁ : g₁ = f := by
|
||
unfold g₁
|
||
rw [h₂h₁]
|
||
simp
|
||
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
|
||
rwa [h₃g₁]
|
||
let A := h₄g₁.makeStronglyMeromorphic_id
|
||
unfold g
|
||
rw [← A, h₃g₁]
|
||
· have : (0 : ℂ) ^ h₁f.divisor z₀ = (0 : ℂ) := by
|
||
exact zero_zpow (h₁f.divisor z₀) h
|
||
rw [this]
|
||
simp
|
||
let A := h₂f.order_eq_zero_iff.not
|
||
simp at A
|
||
rw [← A]
|
||
unfold MeromorphicOn.divisor at h
|
||
simp [hz₀] at h
|
||
exact h.1
|
||
· simp
|
||
let B := m₁ (h₁g₁ z₀ hz₀) z hz
|
||
unfold g
|
||
rw [← B]
|
||
unfold g₁ h₁
|
||
simp [hz]
|
||
rw [mul_assoc]
|
||
rw [inv_mul_cancel₀]
|
||
simp
|
||
apply zpow_ne_zero
|
||
rwa [sub_ne_zero]
|
||
|
||
|
||
theorem MeromorphicOn.decompose₂
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{P : Finset U}
|
||
(hf : StronglyMeromorphicOn f U) :
|
||
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||
∧ (∀ p : P, g p ≠ 0)
|
||
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||
|
||
apply Finset.induction (p := fun (P : Finset U) ↦
|
||
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||
∧ (∀ p : P, g p ≠ 0)
|
||
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
|
||
|
||
-- case empty
|
||
simp
|
||
exact hf.meromorphicOn
|
||
|
||
-- case insert
|
||
intro u P hu iHyp
|
||
intro hOrder
|
||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
|
||
|
||
have h₀ : AnalyticAt ℂ (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
|
||
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||
funext w
|
||
simp
|
||
rw [this]
|
||
apply Finset.analyticAt_prod
|
||
intro p hp
|
||
apply AnalyticAt.zpow
|
||
apply AnalyticAt.sub
|
||
apply analyticAt_id
|
||
apply analyticAt_const
|
||
by_contra hCon
|
||
rw [sub_eq_zero] at hCon
|
||
have : p.1 = u := by
|
||
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||
rw [← this] at hu
|
||
simp [hp] at hu
|
||
|
||
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
|
||
simp only [Finset.prod_apply]
|
||
rw [Finset.prod_ne_zero_iff]
|
||
intro p hp
|
||
apply zpow_ne_zero
|
||
by_contra hCon
|
||
rw [sub_eq_zero] at hCon
|
||
have : p.1 = u := by
|
||
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||
rw [← this] at hu
|
||
simp [hp] at hu
|
||
|
||
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
|
||
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
|
||
rw [← h₄g₀]
|
||
exact hf u u.2
|
||
|
||
have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by
|
||
by_contra hCon
|
||
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
||
simp_rw [← h₄g₀, hCon] at A
|
||
simp at A
|
||
let B := hOrder u (Finset.mem_insert_self u P)
|
||
tauto
|
||
|
||
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
|
||
use g
|
||
· constructor
|
||
· exact h₁g
|
||
· constructor
|
||
· intro ⟨v₁, v₂⟩
|
||
simp
|
||
simp at v₂
|
||
rcases v₂ with hv|hv
|
||
· rwa [hv]
|
||
· let A := h₂g₀ ⟨v₁, hv⟩
|
||
rw [h₄g] at A
|
||
rw [← analyticAt_of_mul_analytic] at A
|
||
simp at A
|
||
exact A
|
||
--
|
||
simp
|
||
apply AnalyticAt.zpow
|
||
apply AnalyticAt.sub
|
||
apply analyticAt_id
|
||
apply analyticAt_const
|
||
by_contra hCon
|
||
rw [sub_eq_zero] at hCon
|
||
|
||
have : v₁ = u := by
|
||
exact SetCoe.ext hCon
|
||
rw [this] at hv
|
||
tauto
|
||
--
|
||
apply zpow_ne_zero
|
||
simp
|
||
by_contra hCon
|
||
rw [sub_eq_zero] at hCon
|
||
have : v₁ = u := by
|
||
exact SetCoe.ext hCon
|
||
rw [this] at hv
|
||
tauto
|
||
|
||
· constructor
|
||
· intro ⟨v₁, v₂⟩
|
||
simp
|
||
simp at v₂
|
||
rcases v₂ with hv|hv
|
||
· rwa [hv]
|
||
· by_contra hCon
|
||
let A := h₃g₀ ⟨v₁,hv⟩
|
||
rw [h₄g] at A
|
||
simp at A
|
||
tauto
|
||
· conv =>
|
||
left
|
||
rw [h₄g₀, h₄g]
|
||
simp
|
||
rw [mul_assoc]
|
||
congr
|
||
rw [Finset.prod_insert]
|
||
simp
|
||
congr
|
||
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
|
||
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||
exact Eq.eventuallyEq h₄g₀
|
||
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
|
||
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
|
||
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
||
rw [C]
|
||
let D := h₀.order_eq_zero_iff.2 h₁
|
||
let E := h₀.meromorphicAt_order
|
||
rw [E, D]
|
||
simp
|
||
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
|
||
unfold MeromorphicOn.divisor
|
||
simp
|
||
rw [this]
|
||
rw [this]
|
||
--
|
||
simpa
|
||
|
||
|
||
theorem MeromorphicOn.decompose₃'
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁U : IsCompact U)
|
||
(h₂U : IsConnected U)
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (AnalyticOnNhd ℂ g U)
|
||
∧ (∀ u : U, g u ≠ 0)
|
||
∧ (f = g * ∏ᶠ u, fun z ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) := by
|
||
|
||
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ :=
|
||
StronglyMeromorphicOn.order_ne_top h₁f h₂U h₂f
|
||
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := h₁f.meromorphicOn.divisor.finiteSupport h₁U
|
||
|
||
let d := - h₁f.meromorphicOn.divisor.toFun
|
||
have h₁d : d.support = (Function.support h₁f.meromorphicOn.divisor) := by
|
||
ext x
|
||
unfold d
|
||
simp
|
||
let h₁ := ∏ᶠ u, fun z ↦ (z - u) ^ (d u)
|
||
have h₁h₁ : StronglyMeromorphicOn h₁ U := by
|
||
intro z hz
|
||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial
|
||
have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by
|
||
apply stronglyMeromorphicOn_divisor_ratlPolynomial_U
|
||
rwa [h₁d]
|
||
--
|
||
rw [h₁d]
|
||
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||
intro z hz
|
||
apply stronglyMeromorphicOn_ratlPolynomial₃order
|
||
have h₄h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by
|
||
intro z hz
|
||
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁]
|
||
rwa [h₁d]
|
||
|
||
let g' := f * h₁
|
||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||
have h₂g' : h₁g'.divisor.toFun = 0 := by
|
||
rw [MeromorphicOn.divisor_mul h₁f.meromorphicOn (fun z hz ↦ h₃f ⟨z, hz⟩) h₁h₁.meromorphicOn h₃h₁]
|
||
rw [h₂h₁]
|
||
unfold d
|
||
simp
|
||
have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by
|
||
intro u
|
||
rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt]
|
||
rw [h₄h₁]
|
||
unfold d
|
||
unfold MeromorphicOn.divisor
|
||
simp
|
||
have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by
|
||
rw [eq_comm]
|
||
let A := h₃f u
|
||
exact untop'_of_ne_top A
|
||
rw [this]
|
||
simp
|
||
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
|
||
rw [← WithTop.coe_add]
|
||
simp
|
||
exact u.2
|
||
|
||
let g := h₁g'.makeStronglyMeromorphicOn
|
||
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
|
||
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
|
||
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
|
||
rw [h₂g']
|
||
have h₃g : AnalyticOnNhd ℂ g U := by
|
||
apply StronglyMeromorphicOn.analyticOnNhd
|
||
rw [h₂g]
|
||
simp
|
||
assumption
|
||
have h₄g : ∀ u : U, g u ≠ 0 := by
|
||
intro u
|
||
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
|
||
rw [makeStronglyMeromorphicOn_changeOrder]
|
||
let A := h₃g' u
|
||
exact A
|
||
exact u.2
|
||
|
||
use g
|
||
constructor
|
||
· exact StronglyMeromorphicOn.meromorphicOn h₁g
|
||
· constructor
|
||
· exact h₃g
|
||
· constructor
|
||
· exact h₄g
|
||
· have t₀ : StronglyMeromorphicOn (g * ∏ᶠ (u : ℂ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) U := by
|
||
apply stronglyMeromorphicOn_of_mul_analytic' h₃g h₄g
|
||
apply stronglyMeromorphicOn_ratlPolynomial₃U
|
||
|
||
funext z
|
||
by_cases hz : z ∈ U
|
||
· apply Filter.EventuallyEq.eq_of_nhds
|
||
apply StronglyMeromorphicAt.localIdentity (h₁f z hz) (t₀ z hz)
|
||
have h₅g : g =ᶠ[𝓝[≠] z] g' := makeStronglyMeromorphicOn_changeDiscrete h₁g' hz
|
||
have Y' : (g' * ∏ᶠ (u : ℂ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) =ᶠ[𝓝[≠] z] g * ∏ᶠ (u : ℂ), fun z => (z - u) ^ (h₁f.meromorphicOn.divisor u) := by
|
||
apply Filter.EventuallyEq.symm
|
||
exact Filter.EventuallyEq.mul h₅g (by simp)
|
||
apply Filter.EventuallyEq.trans _ Y'
|
||
unfold g'
|
||
unfold h₁
|
||
|
||
let A := h₁f.meromorphicOn.divisor.locallyFiniteInU z hz
|
||
let B := eventually_nhdsWithin_iff.1 A
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 B
|
||
|
||
apply eventually_nhdsWithin_iff.2
|
||
rw [eventually_nhds_iff]
|
||
use t
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
let C := h₁t y h₁y h₂y
|
||
rw [mul_assoc]
|
||
simp
|
||
have : (finprod (fun u z => (z - u) ^ d u) y * finprod (fun u z => (z - u) ^ (h₁f.meromorphicOn.divisor u)) y) = 1 := by
|
||
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
|
||
rwa [ratlPoly_mulsupport, h₁d]
|
||
rw [finprod_eq_prod _ t₀]
|
||
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
|
||
rwa [ratlPoly_mulsupport]
|
||
rw [finprod_eq_prod _ t₁]
|
||
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
|
||
rw [ratlPoly_mulsupport]
|
||
rw [ratlPoly_mulsupport]
|
||
unfold d
|
||
simp
|
||
have : t₀.toFinset = t₁.toFinset := by congr
|
||
rw [this]
|
||
simp
|
||
rw [← Finset.prod_mul_distrib]
|
||
apply Finset.prod_eq_one
|
||
intro x hx
|
||
apply zpow_neg_mul_zpow_self
|
||
have : y ∉ t₁.toFinset := by
|
||
simp
|
||
simp at C
|
||
rw [C]
|
||
simp
|
||
tauto
|
||
by_contra H
|
||
rw [sub_eq_zero] at H
|
||
rw [H] at this
|
||
tauto
|
||
|
||
rw [this]
|
||
simp
|
||
· exact ⟨h₂t, h₃t⟩
|
||
· simp
|
||
have : g z = g' z := by
|
||
unfold g
|
||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||
simp [hz]
|
||
rw [this]
|
||
unfold g'
|
||
unfold h₁
|
||
simp
|
||
rw [mul_assoc]
|
||
nth_rw 1 [← mul_one (f z)]
|
||
congr
|
||
have t₀ : (Function.mulSupport fun u z => (z - u) ^ d u).Finite := by
|
||
rwa [ratlPoly_mulsupport, h₁d]
|
||
rw [finprod_eq_prod _ t₀]
|
||
have t₁ : (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u).Finite := by
|
||
rwa [ratlPoly_mulsupport]
|
||
rw [finprod_eq_prod _ t₁]
|
||
have : (Function.mulSupport fun u z => (z - u) ^ d u) = (Function.mulSupport fun u z => (z - u) ^ h₁f.meromorphicOn.divisor u) := by
|
||
rw [ratlPoly_mulsupport]
|
||
rw [ratlPoly_mulsupport]
|
||
unfold d
|
||
simp
|
||
have : t₀.toFinset = t₁.toFinset := by congr
|
||
rw [this]
|
||
simp
|
||
rw [← Finset.prod_mul_distrib]
|
||
rw [eq_comm]
|
||
apply Finset.prod_eq_one
|
||
intro x hx
|
||
apply zpow_neg_mul_zpow_self
|
||
|
||
have : z ∉ t₁.toFinset := by
|
||
simp
|
||
have : h₁f.meromorphicOn.divisor z = 0 := by
|
||
let A := h₁f.meromorphicOn.divisor.supportInU
|
||
simp at A
|
||
by_contra H
|
||
let B := A z H
|
||
tauto
|
||
rw [this]
|
||
simp
|
||
rfl
|
||
by_contra H
|
||
rw [sub_eq_zero] at H
|
||
rw [H] at this
|
||
tauto
|
||
|
||
|
||
theorem StronglyMeromorphicOn.decompose_log
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁U : IsCompact U)
|
||
(h₂U : IsConnected U)
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||
∧ (AnalyticOnNhd ℂ g U)
|
||
∧ (∀ u : U, g u ≠ 0)
|
||
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] fun z ↦ log ‖g z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖ := by
|
||
|
||
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||
exact Divisor.finiteSupport h₁U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||
|
||
have hSupp₁ {z : ℂ} : (fun s ↦ (h₁f.meromorphicOn.divisor s) * log ‖z - s‖).support ⊆ h₃f.toFinset := by
|
||
intro x
|
||
contrapose
|
||
simp; tauto
|
||
simp_rw [finsum_eq_sum_of_support_subset _ hSupp₁]
|
||
|
||
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₃' h₁U h₂U h₁f h₂f
|
||
have hSupp₂ {z : ℂ} : ( fun (u : ℂ) ↦ (fun (z : ℂ) ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) ).mulSupport ⊆ h₃f.toFinset := by
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
simp; tauto
|
||
rw [finprod_eq_prod_of_mulSupport_subset _ hSupp₂] at h₄g
|
||
|
||
use g
|
||
simp only [h₁g, h₂g, h₃g, ne_eq, true_and, not_false_eq_true, implies_true]
|
||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||
use {z | f z ≠ 0}
|
||
constructor
|
||
· have A := h₁f.meromorphicOn.divisor.codiscreteWithin
|
||
have : {z | f z ≠ 0} ∩ U = (Function.support h₁f.meromorphicOn.divisor)ᶜ ∩ U := by
|
||
rw [← h₁f.support_divisor h₂f h₂U]
|
||
ext u
|
||
simp; tauto
|
||
|
||
rw [codiscreteWithin_congr this]
|
||
exact A
|
||
|
||
· intro z hz
|
||
nth_rw 1 [h₄g]
|
||
simp
|
||
rw [log_mul, log_prod]
|
||
congr
|
||
ext u
|
||
rw [log_zpow]
|
||
--
|
||
intro x hx
|
||
simp at hx
|
||
have h₁x : x ∈ U := by
|
||
exact h₁f.meromorphicOn.divisor.supportInU hx
|
||
|
||
apply zpow_ne_zero
|
||
simp
|
||
|
||
by_contra hCon
|
||
rw [← hCon] at hx
|
||
unfold MeromorphicOn.divisor at hx
|
||
rw [hCon] at hz
|
||
simp at hz
|
||
let A := (h₁f x h₁x).order_eq_zero_iff
|
||
let B := A.2 hz
|
||
simp [B] at hx
|
||
obtain ⟨a, b⟩ := hx
|
||
let c := b.1
|
||
simp_rw [hCon] at c
|
||
tauto
|
||
--
|
||
simp at hz
|
||
by_contra hCon
|
||
simp at hCon
|
||
rw [h₄g] at hz
|
||
simp at hz
|
||
tauto
|
||
--
|
||
rw [Finset.prod_ne_zero_iff]
|
||
intro x hx
|
||
simp at hx
|
||
have h₁x : x ∈ U := by
|
||
exact h₁f.meromorphicOn.divisor.supportInU hx
|
||
|
||
apply zpow_ne_zero
|
||
simp
|
||
|
||
by_contra hCon
|
||
rw [← hCon] at hx
|
||
unfold MeromorphicOn.divisor at hx
|
||
rw [hCon] at hz
|
||
simp at hz
|
||
let A := (h₁f x h₁x).order_eq_zero_iff
|
||
let B := A.2 hz
|
||
simp [B] at hx
|
||
obtain ⟨a, b⟩ := hx
|
||
let c := b.1
|
||
simp_rw [hCon] at c
|
||
tauto
|
||
|
||
exact 0
|
||
|
||
|
||
theorem MeromorphicOn.decompose_log
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁U : IsCompact U)
|
||
(h₂U : IsConnected U)
|
||
(h₃U : interior U ≠ ∅)
|
||
(h₁f : MeromorphicOn f U)
|
||
(h₂f : ∃ u : U, (h₁f u u.2).order ≠ ⊤) :
|
||
∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U)
|
||
∧ (∀ u : U, g u ≠ 0)
|
||
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] fun z ↦ log ‖g z‖ + ∑ᶠ s, (h₁f.divisor s) * log ‖z - s‖ := by
|
||
|
||
let F := h₁f.makeStronglyMeromorphicOn
|
||
have h₁F := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f
|
||
have h₂F : ∃ u : U, (h₁F.meromorphicOn u u.2).order ≠ ⊤ := by
|
||
obtain ⟨u, hu⟩ := h₂f
|
||
use u
|
||
rw [makeStronglyMeromorphicOn_changeOrder h₁f u.2]
|
||
assumption
|
||
|
||
have t₁ : ∃ u : U, F u ≠ 0 := by
|
||
let A := h₁F.meromorphicOn.nonvanish_of_order_ne_top h₂F h₂U h₃U
|
||
tauto
|
||
have t₃ : (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin U] (fun z ↦ log ‖F z‖) := by
|
||
-- This would be interesting for a tactic
|
||
rw [eventuallyEq_iff_exists_mem]
|
||
obtain ⟨s, h₁s, h₂s⟩ := eventuallyEq_iff_exists_mem.1 (makeStronglyMeromorphicOn_changeDiscrete'' h₁f)
|
||
use s
|
||
tauto
|
||
|
||
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁F.decompose_log h₁U h₂U t₁
|
||
use g
|
||
constructor
|
||
· exact h₂g
|
||
· constructor
|
||
· exact h₃g
|
||
· apply t₃.trans
|
||
rw [h₁f.divisor_of_makeStronglyMeromorphicOn]
|
||
exact h₄g
|