345 lines
10 KiB
Plaintext
345 lines
10 KiB
Plaintext
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||
import Mathlib.Analysis.Complex.Basic
|
||
import Mathlib.Analysis.Analytic.Linear
|
||
|
||
open Topology
|
||
|
||
|
||
theorem AnalyticAt.order_neq_top_iff
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
hf.order ≠ ⊤ ↔ ∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (hf.order.toNat) • g z := by
|
||
rw [← hf.order_eq_nat_iff]
|
||
constructor
|
||
· intro h₁f
|
||
exact Eq.symm (ENat.coe_toNat h₁f)
|
||
· intro h₁f
|
||
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
|
||
|
||
|
||
theorem AnalyticAt.order_mul
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
|
||
by_cases h₂f₁ : hf₁.order = ⊤
|
||
· simp [h₂f₁]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t y hy]
|
||
ring
|
||
· exact ⟨h₂t, h₃t⟩
|
||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||
· simp [h₂f₂]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t y hy]
|
||
ring
|
||
· exact ⟨h₂t, h₃t⟩
|
||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||
use g₁ * g₂
|
||
constructor
|
||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||
· constructor
|
||
· simp; tauto
|
||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||
rw [eventually_nhds_iff]
|
||
use t₁ ∩ t₂
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||
simp; ring
|
||
· constructor
|
||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||
|
||
|
||
theorem AnalyticAt.order_eq_zero_iff
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
hf.order = 0 ↔ f z₀ ≠ 0 := by
|
||
|
||
have : (0 : ENat) = (0 : Nat) := by rfl
|
||
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
|
||
|
||
constructor
|
||
· intro hz
|
||
obtain ⟨g, _, h₂g, h₃g⟩ := hz
|
||
simp at h₃g
|
||
rw [Filter.Eventually.self_of_nhds h₃g]
|
||
tauto
|
||
· intro hz
|
||
use f
|
||
constructor
|
||
· exact hf
|
||
· constructor
|
||
· exact hz
|
||
· simp
|
||
|
||
|
||
theorem AnalyticAt.order_pow
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
{n : ℕ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
(hf.pow n).order = n * hf.order := by
|
||
|
||
induction' n with n hn
|
||
· simp; rw [AnalyticAt.order_eq_zero_iff]; simp
|
||
· simp
|
||
simp_rw [add_mul, pow_add]
|
||
simp
|
||
rw [AnalyticAt.order_mul (hf.pow n) hf]
|
||
rw [hn]
|
||
|
||
|
||
theorem AnalyticAt.supp_order_toNat
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
hf.order.toNat ≠ 0 → f z₀ = 0 := by
|
||
|
||
contrapose
|
||
intro h₁f
|
||
simp [hf.order_eq_zero_iff.2 h₁f]
|
||
|
||
|
||
theorem eventually_nhds_comp_composition
|
||
{f₁ f₂ ℓ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : ∀ᶠ (z : ℂ) in nhds (ℓ z₀), f₁ z = f₂ z)
|
||
(hℓ : Continuous ℓ) :
|
||
∀ᶠ (z : ℂ) in nhds z₀, (f₁ ∘ ℓ) z = (f₂ ∘ ℓ) z := by
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 hf
|
||
apply eventually_nhds_iff.2
|
||
use ℓ⁻¹' t
|
||
constructor
|
||
· intro y hy
|
||
exact h₁t (ℓ y) hy
|
||
· constructor
|
||
· apply IsOpen.preimage
|
||
exact hℓ
|
||
exact h₂t
|
||
· exact h₃t
|
||
|
||
|
||
theorem AnalyticAt.order_congr
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||
(hf : f₁ =ᶠ[nhds z₀] f₂) :
|
||
hf₁.order = (hf₁.congr hf).order := by
|
||
|
||
by_cases h₁f₁ : hf₁.order = ⊤
|
||
rw [h₁f₁, eq_comm, AnalyticAt.order_eq_top_iff]
|
||
rw [AnalyticAt.order_eq_top_iff] at h₁f₁
|
||
exact Filter.EventuallyEq.rw h₁f₁ (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||
--
|
||
let n := hf₁.order.toNat
|
||
have hn : hf₁.order = n := Eq.symm (ENat.coe_toNat h₁f₁)
|
||
rw [hn, eq_comm, AnalyticAt.order_eq_nat_iff]
|
||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||
use g
|
||
constructor
|
||
· assumption
|
||
· constructor
|
||
· assumption
|
||
· exact Filter.EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
|
||
|
||
|
||
theorem AnalyticAt.order_comp_CLE
|
||
(ℓ : ℂ ≃L[ℂ] ℂ)
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f (ℓ z₀)) :
|
||
hf.order = (hf.comp (ℓ.analyticAt z₀)).order := by
|
||
|
||
by_cases h₁f : hf.order = ⊤
|
||
· rw [h₁f]
|
||
rw [AnalyticAt.order_eq_top_iff] at h₁f
|
||
let A := eventually_nhds_comp_composition h₁f ℓ.continuous
|
||
simp at A
|
||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||
|
||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by
|
||
apply analyticAt_const
|
||
have : this.order = ⊤ := by
|
||
rw [AnalyticAt.order_eq_top_iff]
|
||
simp
|
||
rw [this]
|
||
· let n := hf.order.toNat
|
||
have hn : hf.order = n := Eq.symm (ENat.coe_toNat h₁f)
|
||
rw [hn]
|
||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
||
|
||
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
||
apply AnalyticAt.sub
|
||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||
exact analyticAt_const
|
||
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
||
exact pow t₁ n
|
||
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
||
apply AnalyticAt.mul
|
||
exact t₀
|
||
apply AnalyticAt.comp h₁g
|
||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||
simp
|
||
|
||
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||
|
||
have : t₁.order = (1 : ℕ) := by
|
||
rw [AnalyticAt.order_eq_nat_iff]
|
||
use (fun _ ↦ ℓ 1)
|
||
simp
|
||
constructor
|
||
· exact analyticAt_const
|
||
· apply Filter.Eventually.of_forall
|
||
intro x
|
||
calc ℓ x - ℓ z₀
|
||
_ = ℓ (x - z₀) := by
|
||
exact Eq.symm (ContinuousLinearEquiv.map_sub ℓ x z₀)
|
||
_ = ℓ ((x - z₀) * 1) := by
|
||
simp
|
||
_ = (x - z₀) * ℓ 1 := by
|
||
rw [← smul_eq_mul, ← smul_eq_mul]
|
||
exact ContinuousLinearEquiv.map_smul ℓ (x - z₀) 1
|
||
|
||
have : t₀.order = n := by
|
||
rw [AnalyticAt.order_pow t₁, this]
|
||
simp
|
||
|
||
rw [this]
|
||
|
||
have : (comp h₁g (ContinuousLinearEquiv.analyticAt ℓ z₀)).order = 0 := by
|
||
rwa [AnalyticAt.order_eq_zero_iff]
|
||
rw [this]
|
||
|
||
simp
|
||
|
||
|
||
theorem AnalyticAt.localIdentity
|
||
{f g : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀)
|
||
(hg : AnalyticAt ℂ g z₀) :
|
||
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
|
||
intro h
|
||
let Δ := f - g
|
||
have : AnalyticAt ℂ Δ z₀ := AnalyticAt.sub hf hg
|
||
have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by
|
||
exact Filter.eventuallyEq_iff_sub.mp h
|
||
|
||
have : Δ =ᶠ[𝓝 z₀] 0 := by
|
||
rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h
|
||
· exact h
|
||
· have := Filter.EventuallyEq.eventually t₁
|
||
let A := Filter.eventually_and.2 ⟨this, h⟩
|
||
let _ := Filter.Eventually.exists A
|
||
tauto
|
||
exact Filter.eventuallyEq_iff_sub.mpr this
|
||
|
||
|
||
theorem AnalyticAt.mul₁
|
||
{f g : ℂ → ℂ}
|
||
{z : ℂ}
|
||
(hf : AnalyticAt ℂ f z)
|
||
(hg : AnalyticAt ℂ g z) :
|
||
AnalyticAt ℂ (f * g) z := by
|
||
rw [(by rfl : f * g = (fun x ↦ f x * g x))]
|
||
exact mul hf hg
|
||
|
||
|
||
theorem analyticAt_finprod
|
||
{α : Type}
|
||
{f : α → ℂ → ℂ}
|
||
{z : ℂ}
|
||
(hf : ∀ a, AnalyticAt ℂ (f a) z) :
|
||
AnalyticAt ℂ (∏ᶠ a, f a) z := by
|
||
by_cases h₁f : (Function.mulSupport f).Finite
|
||
· rw [finprod_eq_prod f h₁f]
|
||
rw [Finset.prod_fn h₁f.toFinset f]
|
||
exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a)
|
||
· rw [finprod_of_infinite_mulSupport h₁f]
|
||
exact analyticAt_const
|
||
|
||
|
||
lemma AnalyticAt.zpow_nonneg
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
{n : ℤ}
|
||
(hf : AnalyticAt ℂ f z₀)
|
||
(hn : 0 ≤ n) :
|
||
AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by
|
||
simp_rw [(Eq.symm (Int.toNat_of_nonneg hn) : n = OfNat.ofNat n.toNat), zpow_ofNat]
|
||
apply AnalyticAt.pow hf
|
||
|
||
|
||
theorem AnalyticAt.zpow
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
{n : ℤ}
|
||
(h₁f : AnalyticAt ℂ f z₀)
|
||
(h₂f : f z₀ ≠ 0) :
|
||
AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by
|
||
by_cases hn : 0 ≤ n
|
||
· exact zpow_nonneg h₁f hn
|
||
· rw [(Int.eq_neg_comm.mp rfl : n = - (- n))]
|
||
conv =>
|
||
arg 2
|
||
intro x
|
||
rw [zpow_neg]
|
||
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
|
||
|
||
|
||
/- A function is analytic at a point iff it is analytic after multiplication
|
||
with a non-vanishing analytic function
|
||
-/
|
||
theorem analyticAt_of_mul_analytic
|
||
{f g : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(h₁g : AnalyticAt ℂ g z₀)
|
||
(h₂g : g z₀ ≠ 0) :
|
||
AnalyticAt ℂ f z₀ ↔ AnalyticAt ℂ (f * g) z₀ := by
|
||
constructor
|
||
· exact fun a => AnalyticAt.mul₁ a h₁g
|
||
· intro hprod
|
||
|
||
let g' := fun z ↦ (g z)⁻¹
|
||
have h₁g' := h₁g.inv h₂g
|
||
have h₂g' : g' z₀ ≠ 0 := by
|
||
exact inv_ne_zero h₂g
|
||
|
||
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
|
||
unfold Filter.EventuallyEq
|
||
apply Filter.eventually_iff_exists_mem.mpr
|
||
use g⁻¹' {0}ᶜ
|
||
constructor
|
||
· apply ContinuousAt.preimage_mem_nhds
|
||
exact AnalyticAt.continuousAt h₁g
|
||
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||
· intro y hy
|
||
simp at hy
|
||
simp [hy]
|
||
rw [analyticAt_congr this]
|
||
apply hprod.mul
|
||
exact h₁g'
|