nevanlinna/Nevanlinna/meromorphicOn_divisor.lean
Stefan Kebekus 12397c3055 Working…
2024-12-16 12:43:00 +01:00

217 lines
6.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn
import Nevanlinna.stronglyMeromorphicOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def MeromorphicOn.divisor
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.untop' 0 : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhdsWithin_iff] at h
rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
use N ∩ {z}ᶜ
constructor
· intro x h₁x _
exact h₁N x h₁x.1 h₁x.2
· constructor
· exact IsOpen.inter h₂N isOpen_compl_singleton
· exact Set.mem_inter h₁y h₂y
· simp [h₃y]
· tauto
· let A := (hf z hz).eventually_analyticAt
let B := Filter.eventually_and.2 ⟨h, A⟩
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
let C := (h₁N y h₁y h₂y).1
let E := D C
rw [E]
simp
· simp [h₃y]
· tauto
theorem MeromorphicOn.divisor_def₁
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U) :
hf.divisor z = ((hf z hz).order.untop' 0 : ) := by
unfold MeromorphicOn.divisor
simp [hz]
theorem MeromorphicOn.divisor_def₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U)
(h₂f : (hf z hz).order ≠ ) :
hf.divisor z = (hf z hz).order.untop h₂f := by
unfold MeromorphicOn.divisor
simp [hz]
rw [WithTop.untop'_eq_iff]
left
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
theorem MeromorphicOn.divisor_mul₀
{f₁ f₂ : }
{U : Set }
{z : }
(hz : z ∈ U)
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
by_cases h₁z : z ∈ U
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ := by
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
simp; tauto
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
rw [untop_add]
· unfold MeromorphicOn.divisor
simp [h₁z]
theorem MeromorphicOn.divisor_mul
{f₁ f₂ : }
{U : Set }
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
funext z
by_cases hz : z ∈ U
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
simp
· simp
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
simp
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
hf.divisor = (stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf).meromorphicOn.divisor := by
unfold MeromorphicOn.divisor
simp
funext z
by_cases hz : z ∈ U
· simp [hz]
congr 1
apply MeromorphicAt.order_congr
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
· simp [hz]
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analyticOnNhd
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
AnalyticOnNhd f U := by
apply StronglyMeromorphicOn.analytic
intro z hz
let A := h₂f z hz
unfold MeromorphicOn.divisor at A
simp [hz] at A
by_cases h : (h₁f z hz).meromorphicAt.order =
· rw [h]
simp
· rw [WithTop.le_untop'_iff] at A
tauto
tauto
assumption
theorem StronglyMeromorphicOn.support_divisor
{f : }
{U : Set }
(hU : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by
ext u
constructor
· intro hu
unfold MeromorphicOn.divisor
simp [MeromorphicOn.order_ne_top hU h₁f h₂f ⟨u, hu.1⟩]
use hu.1
rw [(h₁f u hu.1).order_eq_zero_iff]
simp
exact hu.2
· intro hu
simp at hu
let A := h₁f.meromorphicOn.divisor.supportInU hu
constructor
· exact h₁f.meromorphicOn.divisor.supportInU hu
· simp
let B := (h₁f u A).order_eq_zero_iff.not
simp at B
rw [← B]
unfold MeromorphicOn.divisor at hu
simp [A] at hu
exact hu.1