217 lines
6.0 KiB
Plaintext
217 lines
6.0 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
noncomputable def MeromorphicOn.divisor
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : MeromorphicOn f U) :
|
||
Divisor U where
|
||
|
||
toFun := by
|
||
intro z
|
||
if hz : z ∈ U then
|
||
exact ((hf z hz).order.untop' 0 : ℤ)
|
||
else
|
||
exact 0
|
||
|
||
supportInU := by
|
||
intro z hz
|
||
simp at hz
|
||
by_contra h₂z
|
||
simp [h₂z] at hz
|
||
|
||
locallyFiniteInU := by
|
||
intro z hz
|
||
|
||
apply eventually_nhdsWithin_iff.2
|
||
rw [eventually_nhds_iff]
|
||
|
||
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
|
||
· rw [eventually_nhdsWithin_iff] at h
|
||
rw [eventually_nhds_iff] at h
|
||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
||
use N
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
by_cases h₃y : y ∈ U
|
||
· simp [h₃y]
|
||
right
|
||
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
|
||
rw [eventually_nhdsWithin_iff]
|
||
rw [eventually_nhds_iff]
|
||
use N ∩ {z}ᶜ
|
||
constructor
|
||
· intro x h₁x _
|
||
exact h₁N x h₁x.1 h₁x.2
|
||
· constructor
|
||
· exact IsOpen.inter h₂N isOpen_compl_singleton
|
||
· exact Set.mem_inter h₁y h₂y
|
||
· simp [h₃y]
|
||
· tauto
|
||
|
||
· let A := (hf z hz).eventually_analyticAt
|
||
let B := Filter.eventually_and.2 ⟨h, A⟩
|
||
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
|
||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
|
||
use N
|
||
constructor
|
||
· intro y h₁y h₂y
|
||
by_cases h₃y : y ∈ U
|
||
· simp [h₃y]
|
||
left
|
||
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
|
||
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
|
||
let C := (h₁N y h₁y h₂y).1
|
||
let E := D C
|
||
rw [E]
|
||
simp
|
||
· simp [h₃y]
|
||
· tauto
|
||
|
||
|
||
theorem MeromorphicOn.divisor_def₁
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz : z ∈ U) :
|
||
hf.divisor z = ((hf z hz).order.untop' 0 : ℤ) := by
|
||
unfold MeromorphicOn.divisor
|
||
simp [hz]
|
||
|
||
|
||
theorem MeromorphicOn.divisor_def₂
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz : z ∈ U)
|
||
(h₂f : (hf z hz).order ≠ ⊤) :
|
||
hf.divisor z = (hf z hz).order.untop h₂f := by
|
||
unfold MeromorphicOn.divisor
|
||
simp [hz]
|
||
rw [WithTop.untop'_eq_iff]
|
||
left
|
||
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
||
|
||
|
||
theorem MeromorphicOn.divisor_mul₀
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z : ℂ}
|
||
(hz : z ∈ U)
|
||
(h₁f₁ : MeromorphicOn f₁ U)
|
||
(h₂f₁ : (h₁f₁ z hz).order ≠ ⊤)
|
||
(h₁f₂ : MeromorphicOn f₂ U)
|
||
(h₂f₂ : (h₁f₂ z hz).order ≠ ⊤) :
|
||
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
|
||
by_cases h₁z : z ∈ U
|
||
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
|
||
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
|
||
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ ⊤ := by
|
||
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
|
||
simp; tauto
|
||
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
|
||
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
|
||
rw [untop_add]
|
||
· unfold MeromorphicOn.divisor
|
||
simp [h₁z]
|
||
|
||
|
||
theorem MeromorphicOn.divisor_mul
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f₁ : MeromorphicOn f₁ U)
|
||
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ ⊤)
|
||
(h₁f₂ : MeromorphicOn f₂ U)
|
||
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ⊤) :
|
||
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
|
||
funext z
|
||
by_cases hz : z ∈ U
|
||
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
|
||
simp
|
||
· simp
|
||
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
|
||
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
|
||
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
|
||
simp
|
||
|
||
|
||
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : MeromorphicOn f U) :
|
||
hf.divisor = (stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf).meromorphicOn.divisor := by
|
||
unfold MeromorphicOn.divisor
|
||
simp
|
||
funext z
|
||
by_cases hz : z ∈ U
|
||
· simp [hz]
|
||
congr 1
|
||
apply MeromorphicAt.order_congr
|
||
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
|
||
· simp [hz]
|
||
|
||
|
||
|
||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
||
theorem StronglyMeromorphicOn.analyticOnNhd
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
|
||
AnalyticOnNhd ℂ f U := by
|
||
|
||
apply StronglyMeromorphicOn.analytic
|
||
intro z hz
|
||
let A := h₂f z hz
|
||
unfold MeromorphicOn.divisor at A
|
||
simp [hz] at A
|
||
by_cases h : (h₁f z hz).meromorphicAt.order = ⊤
|
||
· rw [h]
|
||
simp
|
||
· rw [WithTop.le_untop'_iff] at A
|
||
tauto
|
||
tauto
|
||
assumption
|
||
|
||
|
||
theorem StronglyMeromorphicOn.support_divisor
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hU : IsConnected U)
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(h₂f : ∃ u : U, f u ≠ 0) :
|
||
U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by
|
||
|
||
ext u
|
||
constructor
|
||
· intro hu
|
||
unfold MeromorphicOn.divisor
|
||
simp [MeromorphicOn.order_ne_top hU h₁f h₂f ⟨u, hu.1⟩]
|
||
use hu.1
|
||
rw [(h₁f u hu.1).order_eq_zero_iff]
|
||
simp
|
||
exact hu.2
|
||
· intro hu
|
||
simp at hu
|
||
let A := h₁f.meromorphicOn.divisor.supportInU hu
|
||
constructor
|
||
· exact h₁f.meromorphicOn.divisor.supportInU hu
|
||
· simp
|
||
let B := (h₁f u A).order_eq_zero_iff.not
|
||
simp at B
|
||
rw [← B]
|
||
unfold MeromorphicOn.divisor at hu
|
||
simp [A] at hu
|
||
exact hu.1
|