nevanlinna/Nevanlinna/codiscreteWithin.lean
Stefan Kebekus 309724de36 Working…
2024-12-16 17:17:43 +01:00

12 lines
375 B
Plaintext

import Mathlib.Topology.DiscreteSubset
theorem codiscreteWithin_congr
{X : Type u_1} [TopologicalSpace X]
{S T U : Set X}
(hST : S ∩ U = T ∩ U) :
S ∈ Filter.codiscreteWithin U ↔ T ∈ Filter.codiscreteWithin U := by
repeat rw [mem_codiscreteWithin]
rw [← Set.diff_inter_self_eq_diff (t := S)]
rw [← Set.diff_inter_self_eq_diff (t := T)]
rw [hST]