108 lines
2.5 KiB
Plaintext
108 lines
2.5 KiB
Plaintext
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
open Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
structure Divisor
|
||
(U : Set ℂ)
|
||
where
|
||
toFun : ℂ → ℤ
|
||
supportInU : toFun.support ⊆ U
|
||
locallyFiniteInU : ∀ x ∈ U, toFun =ᶠ[𝓝[≠] x] 0
|
||
|
||
instance
|
||
(U : Set ℂ) :
|
||
CoeFun (Divisor U) (fun _ ↦ ℂ → ℤ) where
|
||
coe := Divisor.toFun
|
||
|
||
attribute [coe] Divisor.toFun
|
||
|
||
|
||
|
||
theorem Divisor.discreteSupport
|
||
{U : Set ℂ}
|
||
(hU : IsClosed U)
|
||
(D : Divisor U) :
|
||
DiscreteTopology D.toFun.support := by
|
||
apply discreteTopology_subtype_iff.mpr
|
||
intro x hx
|
||
apply inf_principal_eq_bot.mpr
|
||
by_cases h₁x : x ∈ U
|
||
· let A := D.locallyFiniteInU x h₁x
|
||
refine mem_nhdsWithin.mpr ?_
|
||
rw [eventuallyEq_nhdsWithin_iff] at A
|
||
obtain ⟨U, h₁U, h₂U, h₃U⟩ := eventually_nhds_iff.1 A
|
||
use U
|
||
constructor
|
||
· exact h₂U
|
||
· constructor
|
||
· exact h₃U
|
||
· intro y hy
|
||
let C := h₁U y hy.1 hy.2
|
||
tauto
|
||
· refine mem_nhdsWithin.mpr ?_
|
||
use Uᶜ
|
||
constructor
|
||
· simpa
|
||
· constructor
|
||
· tauto
|
||
· intro y _
|
||
let A := D.supportInU
|
||
simp at A
|
||
simp
|
||
exact False.elim (h₁x (A x hx))
|
||
|
||
|
||
theorem Divisor.closedSupport
|
||
{U : Set ℂ}
|
||
(hU : IsClosed U)
|
||
(D : Divisor U) :
|
||
IsClosed D.toFun.support := by
|
||
|
||
rw [← isOpen_compl_iff]
|
||
rw [isOpen_iff_eventually]
|
||
intro x hx
|
||
by_cases h₁x : x ∈ U
|
||
· have A := D.locallyFiniteInU x h₁x
|
||
simp [A]
|
||
simp at hx
|
||
let B := Mnhds A hx
|
||
simpa
|
||
· rw [eventually_iff_exists_mem]
|
||
use Uᶜ
|
||
constructor
|
||
· exact IsClosed.compl_mem_nhds hU h₁x
|
||
· intro y hy
|
||
simp
|
||
exact Function.nmem_support.mp fun a => hy (D.supportInU a)
|
||
|
||
|
||
theorem Divisor.finiteSupport
|
||
{U : Set ℂ}
|
||
(hU : IsCompact U)
|
||
(D : Divisor U) :
|
||
Set.Finite D.toFun.support := by
|
||
apply IsCompact.finite
|
||
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
|
||
exact D.supportInU
|
||
· exact D.discreteSupport hU.isClosed
|
||
|
||
|
||
theorem Divisor.codiscreteWithin
|
||
{U : Set ℂ}
|
||
(D : Divisor U) :
|
||
D.toFun.supportᶜ ∈ Filter.codiscreteWithin U := by
|
||
|
||
simp_rw [mem_codiscreteWithin, disjoint_principal_right]
|
||
intro x hx
|
||
obtain ⟨s, hs⟩ := Filter.eventuallyEq_iff_exists_mem.1 (D.locallyFiniteInU x hx)
|
||
apply Filter.mem_of_superset hs.1
|
||
intro y hy
|
||
simp [hy]
|
||
tauto
|