181 lines
6.6 KiB
Plaintext
181 lines
6.6 KiB
Plaintext
import Mathlib.Analysis.Analytic.Meromorphic
|
||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||
import Nevanlinna.analyticAt
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.intervalIntegrability
|
||
import Nevanlinna.logpos
|
||
import Nevanlinna.meromorphicAt
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.stronglyMeromorphicOn_eliminate
|
||
import Nevanlinna.mathlibAddOn
|
||
|
||
open scoped Interval Topology
|
||
open Real Filter MeasureTheory intervalIntegral
|
||
|
||
|
||
theorem MeromorphicOn.integrable_log_abs_f₀
|
||
{f : ℂ → ℂ}
|
||
{r : ℝ}
|
||
-- WARNING: Not optimal. This needs to go
|
||
(hr : 0 < r)
|
||
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
||
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) r)) :
|
||
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
|
||
|
||
by_cases h₂f : ∃ u : (Metric.closedBall (0 : ℂ) r), (h₁f u u.2).order ≠ ⊤
|
||
· have h₁U : IsCompact (Metric.closedBall (0 : ℂ) r) := isCompact_closedBall 0 r
|
||
|
||
have h₂U : IsConnected (Metric.closedBall (0 : ℂ) r) := by
|
||
constructor
|
||
· exact Metric.nonempty_closedBall.mpr (le_of_lt hr)
|
||
· exact (convex_closedBall (0 : ℂ) r).isPreconnected
|
||
|
||
-- This is where we use 'ball' instead of sphere. However, better
|
||
-- results should make this assumption unnecessary.
|
||
have h₃U : interior (Metric.closedBall (0 : ℂ) r) ≠ ∅ := by
|
||
rw [interior_closedBall, ← Set.nonempty_iff_ne_empty]
|
||
use 0; simp [hr];
|
||
repeat exact Ne.symm (ne_of_lt hr)
|
||
|
||
have h₃f : Set.Finite (Function.support h₁f.divisor) := by
|
||
exact Divisor.finiteSupport h₁U h₁f.divisor
|
||
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := MeromorphicOn.decompose_log h₁U h₂U h₃U h₁f h₂f
|
||
have : (fun z ↦ log ‖f (circleMap 0 r z)‖) = (fun z ↦ log ‖f z‖) ∘ (circleMap 0 r) := by
|
||
rfl
|
||
rw [this]
|
||
have : Metric.sphere (0 : ℂ) |r| ⊆ Metric.closedBall (0 : ℂ) r := by
|
||
rw [abs_of_pos hr]
|
||
apply Metric.sphere_subset_closedBall
|
||
|
||
rw [integrability_congr_changeDiscrete this h₃g]
|
||
|
||
apply IntervalIntegrable.add
|
||
--
|
||
apply Continuous.intervalIntegrable
|
||
apply continuous_iff_continuousAt.2
|
||
intro x
|
||
have : (fun x => log ‖g (circleMap 0 r x)‖) = log ∘ Complex.abs ∘ g ∘ (fun x ↦ circleMap 0 r x) :=
|
||
rfl
|
||
rw [this]
|
||
apply ContinuousAt.comp
|
||
apply Real.continuousAt_log
|
||
· simp
|
||
have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by
|
||
apply circleMap_mem_closedBall
|
||
exact le_of_lt hr
|
||
exact h₂g ⟨(circleMap 0 r x), this⟩
|
||
apply ContinuousAt.comp
|
||
· apply Continuous.continuousAt Complex.continuous_abs
|
||
apply ContinuousAt.comp
|
||
· have : (circleMap 0 r x) ∈ (Metric.closedBall (0 : ℂ) r) := by
|
||
apply circleMap_mem_closedBall (0 : ℂ) (le_of_lt hr) x
|
||
apply (h₁g (circleMap 0 r x) this).continuousAt
|
||
apply Continuous.continuousAt (continuous_circleMap 0 r)
|
||
--
|
||
have h {x : ℝ} : (Function.support fun s => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) ⊆ h₃f.toFinset := by
|
||
intro x; simp; tauto
|
||
simp_rw [finsum_eq_sum_of_support_subset _ h]
|
||
have : (fun x => ∑ s ∈ h₃f.toFinset, (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) = (∑ s ∈ h₃f.toFinset, fun x => (h₁f.divisor s) * log ‖circleMap 0 r x - s‖) := by
|
||
ext x; simp
|
||
rw [this]
|
||
apply IntervalIntegrable.sum h₃f.toFinset
|
||
intro s hs
|
||
apply IntervalIntegrable.const_mul
|
||
|
||
apply intervalIntegrable_logAbs_circleMap_sub_const
|
||
exact Ne.symm (ne_of_lt hr)
|
||
|
||
· push_neg at h₂f
|
||
|
||
let F := h₁f.makeStronglyMeromorphicOn
|
||
have : (fun z => log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall 0 r)] (fun z => log ‖F z‖) := by
|
||
-- WANT: apply Filter.eventuallyEq.congr
|
||
let A := (makeStronglyMeromorphicOn_changeDiscrete'' h₁f)
|
||
obtain ⟨s, h₁s, h₂s⟩ := eventuallyEq_iff_exists_mem.1 A
|
||
rw [eventuallyEq_iff_exists_mem]
|
||
use s
|
||
constructor
|
||
· exact h₁s
|
||
· intro x hx
|
||
simp_rw [h₂s hx]
|
||
have hU : Metric.sphere (0 : ℂ) |r| ⊆ Metric.closedBall 0 r := by
|
||
rw [abs_of_pos hr]
|
||
exact Metric.sphere_subset_closedBall
|
||
have t₀ : (fun z => log ‖f (circleMap 0 r z)‖) = (fun z => log ‖f z‖) ∘ circleMap 0 r := by
|
||
rfl
|
||
rw [t₀]
|
||
clear t₀
|
||
rw [integrability_congr_changeDiscrete hU this]
|
||
|
||
have : ∀ x ∈ Metric.closedBall 0 r, F x = 0 := by
|
||
intro x hx
|
||
let A := h₂f ⟨x, hx⟩
|
||
rw [← makeStronglyMeromorphicOn_changeOrder h₁f hx] at A
|
||
let B := ((stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f) x hx).order_eq_zero_iff.not.1
|
||
simp [A] at B
|
||
assumption
|
||
have : (fun z => log ‖F z‖) ∘ circleMap 0 r = 0 := by
|
||
funext x
|
||
simp
|
||
left
|
||
apply this
|
||
simp [abs_of_pos hr]
|
||
simp_rw [this]
|
||
apply intervalIntegral.intervalIntegrable_const
|
||
|
||
|
||
theorem MeromorphicOn.integrable_log_abs_f
|
||
{f : ℂ → ℂ}
|
||
{r : ℝ}
|
||
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
||
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) |r|)) :
|
||
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
|
||
|
||
by_cases h₁r : r = 0
|
||
· rw [h₁r]
|
||
simp
|
||
· by_cases h₂r : 0 < r
|
||
· have : |r| = r := by
|
||
exact abs_of_pos h₂r
|
||
rw [this] at h₁f
|
||
exact MeromorphicOn.integrable_log_abs_f₀ h₂r h₁f
|
||
· have t₀ : 0 < -r := by
|
||
have hr_neg : r < 0 := by
|
||
apply lt_of_le_of_ne
|
||
exact le_of_not_lt h₂r
|
||
exact h₁r
|
||
linarith
|
||
have : |r| = -r := by
|
||
apply abs_of_neg
|
||
exact Left.neg_pos_iff.mp t₀
|
||
rw [this] at h₁f
|
||
let A := MeromorphicOn.integrable_log_abs_f₀ t₀ h₁f
|
||
|
||
let B := integrability_congr_negRadius (f := fun z => log ‖f z‖) (r := -r)
|
||
let C := B A
|
||
simp at C
|
||
simpa
|
||
|
||
|
||
theorem MeromorphicOn.integrable_logpos_abs_f
|
||
{f : ℂ → ℂ}
|
||
{r : ℝ}
|
||
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
||
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) |r|)) :
|
||
IntervalIntegrable (fun z ↦ logpos ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
|
||
|
||
simp_rw [logpos_norm]
|
||
simp_rw [mul_add]
|
||
|
||
apply IntervalIntegrable.add
|
||
apply IntervalIntegrable.const_mul
|
||
exact MeromorphicOn.integrable_log_abs_f h₁f
|
||
|
||
apply IntervalIntegrable.const_mul
|
||
apply IntervalIntegrable.norm
|
||
exact MeromorphicOn.integrable_log_abs_f h₁f
|