nevanlinna/Nevanlinna/intervalIntegrability.lean
Stefan Kebekus 1e28302c17 Working…
2024-12-19 21:24:13 +01:00

149 lines
4.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.MeasureTheory.Integral.CircleIntegral
import Nevanlinna.periodic_integrability
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
/- Integral and Integrability up to changes on codiscrete sets -/
theorem d
{U S : Set }
{c : }
{r : }
(hr : r ≠ 0)
(hU : Metric.sphere c |r| ⊆ U)
(hS : S ∈ Filter.codiscreteWithin U) :
Countable ((circleMap c r)⁻¹' Sᶜ) := by
have : (circleMap c r)⁻¹' (S Uᶜ)ᶜ = (circleMap c r)⁻¹' Sᶜ := by
simp [(by simpa : (circleMap c r)⁻¹' U = )]
rw [← this]
apply Set.Countable.preimage_circleMap _ c hr
have : DiscreteTopology ((S Uᶜ)ᶜ : Set ) := by
rw [discreteTopology_subtype_iff]
rw [mem_codiscreteWithin] at hS; simp at hS
intro x hx
rw [← mem_iff_inf_principal_compl, (by ext z; simp; tauto : S Uᶜ = (U \ S)ᶜ)]
rw [Set.compl_union, compl_compl] at hx
exact hS x hx.2
apply TopologicalSpace.separableSpace_iff_countable.1
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
theorem integrability_congr_changeDiscrete₀
{f₁ f₂ : }
{U : Set }
{r : }
(hU : Metric.sphere 0 |r| ⊆ U)
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
intro hf₁
by_cases hr : r = 0
· unfold circleMap
rw [hr]
simp
have : f₂ ∘ (fun (θ : ) ↦ 0) = (fun r ↦ f₂ 0) := by
exact rfl
rw [this]
simp
· apply IntervalIntegrable.congr hf₁
rw [Filter.eventuallyEq_iff_exists_mem]
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero (d hr hU hf)
· tauto
theorem integrability_congr_changeDiscrete
{f₁ f₂ : }
{U : Set }
{r : }
(hU : Metric.sphere (0 : ) |r| ⊆ U)
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) ↔ IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
constructor
· exact integrability_congr_changeDiscrete₀ hU hf
· exact integrability_congr_changeDiscrete₀ hU (EventuallyEq.symm hf)
theorem integral_congr_changeDiscrete
{f₁ f₂ : }
{U : Set }
{r : }
(hr : r ≠ 0)
(hU : Metric.sphere 0 |r| ⊆ U)
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
∫ (x : ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by
apply intervalIntegral.integral_congr_ae
rw [eventually_iff_exists_mem]
use (circleMap 0 r)⁻¹' {z | f₁ z = f₂ z}
constructor
· apply Set.Countable.measure_zero (d hr hU hf)
· tauto
lemma circleMap_neg
{r x : } :
circleMap 0 (-r) x = circleMap 0 r (x + π) := by
unfold circleMap
simp
rw [add_mul]
rw [Complex.exp_add]
simp
theorem integrability_congr_negRadius
{f : }
{r : } :
IntervalIntegrable (fun (θ : ) ↦ f (circleMap 0 r θ)) MeasureTheory.volume 0 (2 * π) →
IntervalIntegrable (fun (θ : ) ↦ f (circleMap 0 (-r) θ)) MeasureTheory.volume 0 (2 * π) := by
intro h
simp_rw [circleMap_neg]
let A := IntervalIntegrable.comp_add_right h π
have t₀ : Function.Periodic (fun (θ : ) ↦ f (circleMap 0 r θ)) (2 * π) := by
intro x
simp
congr 1
exact periodic_circleMap 0 r x
rw [← zero_add (2 * π)] at h
have B := periodic_integrability4 (a₁ := π) (a₂ := 3 * π) t₀ two_pi_pos h
let A := IntervalIntegrable.comp_add_right B π
simp at A
have : 3 * π - π = 2 * π := by
ring
rw [this] at A
exact A
theorem integrabl_congr_negRadius
{f : }
{r : } :
∫ (x : ) in (0)..(2 * π), f (circleMap 0 r x) = ∫ (x : ) in (0)..(2 * π), f (circleMap 0 (-r) x) := by
simp_rw [circleMap_neg]
have t₀ : Function.Periodic (fun (θ : ) ↦ f (circleMap 0 r θ)) (2 * π) := by
intro x
simp
congr 1
exact periodic_circleMap 0 r x
--rw [← zero_add (2 * π)] at h
--have B := periodic_integrability4 (a₁ := π) (a₂ := 3 * π) t₀ two_pi_pos h
have B := intervalIntegral.integral_comp_add_right (a := 0) (b := 2 * π) (fun θ => f (circleMap 0 r θ)) π
rw [B]
let X := t₀.intervalIntegral_add_eq 0 (0 + π)
simp at X
rw [X]
simp
rw [add_comm]